Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency

Abstract

Approximately 8% of the world population and 35–45% of East Asians are carriers of the hereditary disorder aldehyde dehydrogenase 2 (ALDH2) deficiency. ALDH2 plays a central role in the liver to metabolize ethanol. With the common E487K variant, there is a deficiency of ALDH2 function; when ethanol is consumed, there is a systemic accumulation of acetaldehyde, an intermediate product in ethanol metabolism. In ALDH2-deficient individuals, ethanol consumption acutely causes the “Alcohol Flushing Syndrome” with facial flushing, tachycardia, nausea, and headaches. With chronic alcohol consumption, ALDH2 deficiency is associated with a variety of disorders, including a remarkably high risk for aerodigestive tract cancers. Acetaldehyde is a known carcinogen. The epidemiologic data relating to the association of ALDH2 deficiency and cancer risk are striking: ALDH2 homozygotes who are moderate-to-heavy consumers of ethanol have a 7–12-fold increased risk for esophageal cancer, making ALDH2 deficiency the most common hereditary disorder associated with an increased cancer risk. In this review, we summarize the genetics and biochemistry of ALDH2, the epidemiology of cancer risk associated with ALDH2 deficiency, the metabolic consequences of ethanol consumption associated with ALDH2 deficiency, and gene therapy strategies to correct ALDH2 deficiency and its associated cancer risk. With the goal of reducing the risk of aerodigestive tract cancers, in the context that ALDH2 is a hereditary disorder and ALDH2 functions primarily in the liver, ALDH2 deficiency is an ideal target for the application of adeno-associated virus-mediated liver-directed gene therapy to prevent cancer.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The high risk for esophageal cancer in ALDH2 deficiency results from a combination of the ALDH2 deficiency state and ethanol consumption.
Fig. 2: AAVrh.10hALDH2 correction of ALDH2 deficiency in the Aldh2E487K+/+ murine model.
Fig. 3: Effect of AAVrh.10hALDH2 therapy on DNA damage and adducts in the esophageal epithelium after 12-week chronic ethanol exposure.

References

  1. Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 2009;6:e50.

    PubMed  Article  CAS  Google Scholar 

  2. Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev. 2014;94:1–34.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Phan L, Jin Y, Zhang H, Qiang W, Shekhtman E, Shao D, et al. ALFA: allele frequency aggregator. Bethesda, MD: National Center for Biotechnology Information, U.S. National Library of Medicine; 2020.

  5. Crous-Bou M, Rennert G, Cuadras D, Salazar R, Cordero D, Saltz Rennert H, et al. Polymorphisms in alcohol metabolism genes ADH1B and ALDH2, alcohol consumption and colorectal cancer. PLoS ONE. 2013;8:e80158.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Klyosov AA, Rashkovetsky LG, Tahir MK, Keung WM. Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry. 1996;35:4445–56.

    CAS  PubMed  Article  Google Scholar 

  7. Yokoyama A, Muramatsu T, Ohmori T, Higuchi S, Hayashida M, Ishii H. Esophageal cancer and aldehyde dehydrogenase-2 genotypes in Japanese males. Cancer Epidemiol Biomark Prev. 1996;5:99–102.

    CAS  Google Scholar 

  8. Hiraki A, Matsuo K, Wakai K, Suzuki T, Hasegawa Y, Tajima K. Gene-gene and gene-environment interactions between alcohol drinking habit and polymorphisms in alcohol-metabolizing enzyme genes and the risk of head and neck cancer in Japan. Cancer Sci. 2007;98:1087–91.

    CAS  PubMed  Article  Google Scholar 

  9. Lee CH, Lee JM, Wu DC, Goan YG, Chou SH, Wu IC, et al. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer. 2008;122:1347–56.

    CAS  PubMed  Article  Google Scholar 

  10. Morita M, Kumashiro R, Kubo N, Nakashima Y, Yoshida R, Yoshinaga K, et al. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J Clin Oncol. 2010;15:126–34.

    PubMed  Article  Google Scholar 

  11. Lee CH, Wu DC, Wu IC, Goan YG, Lee JM, Chou SH, et al. Genetic modulation of ADH1B and ALDH2 polymorphisms with regard to alcohol and tobacco consumption for younger aged esophageal squamous cell carcinoma diagnosis. Int J Cancer. 2009;125:1134–42.

    CAS  PubMed  Article  Google Scholar 

  12. Eriksson CJ, Sippel HW. The distribution and metabolism of acetaldehyde in rats during ethanol oxidation-I. The distribution of acetaldehyde in liver, brain, blood and breath. Biochem Pharmacol. 1977;26:241–7.

    CAS  PubMed  Article  Google Scholar 

  13. Raghunathan L, Hsu LC, Klisak I, Sparkes RS, Yoshida A, Mohandas T. Regional localization of the human genes for aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Genomics. 1988;2:267–9.

    CAS  PubMed  Article  Google Scholar 

  14. Ehrig T, Bosron WF, Li TK. Alcohol and aldehyde dehydrogenase. Alcohol Alcohol. 1990;25:105–16.

    CAS  PubMed  Article  Google Scholar 

  15. Chen CH, Ferreira JCB, Joshi AU, Stevens MC, Li SJ, Hsu JH, et al. Novel and prevalent non-East Asian ALDH2 variants; Implications for global susceptibility to aldehydes’ toxicity. EBioMedicine. 2020;55:102753.

    PubMed  PubMed Central  Article  Google Scholar 

  16. Larson HN, Weiner H, Hurley TD. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J Biol Chem. 2005;280:30550–6.

    CAS  PubMed  Article  Google Scholar 

  17. Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007;282:12940–50.

    CAS  PubMed  Article  Google Scholar 

  18. Matsumoto S, Araki M, Isaka Y, Ono F, Hirohashi K, Ohashi S, et al. E487K-induced disorder in functionally relevant dynamics of mitochondrial aldehyde dehydrogenase 2. Biophys J. 2020;119:628–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Weiner H, Wei B, Zhou J. Subunit communication in tetrameric class 2 human liver aldehyde dehydrogenase as the basis for half-of-the-site reactivity and the dominance of the oriental subunit in a heterotetramer. Chem Biol Interact. 2001;130-132:47–56.

    CAS  PubMed  Article  Google Scholar 

  20. Dandré F, Cassaigne A, Iron A. The frequency of the mitochondrial aldehyde dehydrogenase I2 (atypical) allele in Caucasian, Oriental and African black populations determined by the restriction profile of PCR-amplified DNA. Mol Cell probes. 1995;9:189–93.

    PubMed  Article  Google Scholar 

  21. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    CAS  PubMed  Article  Google Scholar 

  22. Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10:1499.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Maejima R, Iijima K, Kaihovaara P, Hatta W, Koike T, Imatani A, et al. Effects of ALDH2 genotype, PPI treatment and L-cysteine on carcinogenic acetaldehyde in gastric juice and saliva after intragastric alcohol administration. PLoS ONE. 2015;10:e0120397.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Kotova N, Vare D, Schultz N, Gradecka Meesters D, Stepnik M, Grawe J, et al. Genotoxicity of alcohol is linked to DNA replication-associated damage and homologous recombination repair. Carcinogenesis. 2013;34:325–30.

    CAS  PubMed  Article  Google Scholar 

  25. Yang SJ, Wang HY, Li XQ, Du HZ, Zheng CJ, Chen HG, et al. Genetic polymorphisms of ADH2 and ALDH2 association with esophageal cancer risk in southwest China. World J Gastroenterol. 2007;13:5760–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Enomoto N, Takase S, Yasuhara M, Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991;15:141–4.

    CAS  PubMed  Article  Google Scholar 

  27. Setshedi M, Wands JR, Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178–85.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr. 2010;5:121–8.

    CAS  PubMed  Article  Google Scholar 

  29. Yu HS, Oyama T, Matsuda T, Isse T, Yamaguchi T, Tanaka M, et al. The effect of ethanol on the formation of N2-ethylidene-dG adducts in mice: implications for alcohol-related carcinogenicity of the oral cavity and esophagus. Biomarkers. 2012;17:269–74.

    CAS  PubMed  Article  Google Scholar 

  30. Wang M, Yu N, Chen L, Villalta PW, Hochalter JB, Hecht SS. Identification of an acetaldehyde adduct in human liver DNA and quantitation as N2-ethyldeoxyguanosine. Chem Res Toxicol. 2006;19:319–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Wang M, McIntee EJ, Cheng G, Shi Y, Villalta PW, Hecht SS. Identification of DNA adducts of acetaldehyde. Chem Res Toxicol. 2000;13:1149–57.

    CAS  PubMed  Article  Google Scholar 

  32. Matsuda T, Matsumoto A, Uchida M, Kanaly RA, Misaki K, Shibutani S, et al. Increased formation of hepatic N2-ethylidene-2’-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis. 2007;28:2363–6.

    CAS  PubMed  Article  Google Scholar 

  33. Nagayoshi H, Matsumoto A, Nishi R, Kawamoto T, Ichiba M, Matsuda T. Increased formation of gastric N(2)-ethylidene-2’-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Mutat Res. 2009;673:74–7.

    CAS  PubMed  Article  Google Scholar 

  34. Amanuma Y, Ohashi S, Itatani Y, Tsurumaki M, Matsuda S, Kikuchi O, et al. Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium. Sci Rep. 2015;5:14142.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Matsuda T, Yabushita H, Kanaly RA, Shibutani S, Yokoyama A. Increased DNA damage in ALDH2-deficient alcoholics. Chem Res Toxicol. 2006;19:1374–8.

    CAS  PubMed  Article  Google Scholar 

  36. Balbo S, Hashibe M, Gundy S, Brennan P, Canova C, Simonato L, et al. N2-ethyldeoxyguanosine as a potential biomarker for assessing effects of alcohol consumption on DNA. Cancer Epidemiol Biomark Prev. 2008;17:3026–32.

    CAS  Article  Google Scholar 

  37. Yukawa Y, Ohashi S, Amanuma Y, Nakai Y, Tsurumaki M, Kikuchi O, et al. Impairment of aldehyde dehydrogenase 2 increases accumulation of acetaldehyde-derived DNA damage in the esophagus after ethanol ingestion. Am J Cancer Res. 2014;4:279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang JL, Vaca CE. Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis. 1997;18:627–32.

    CAS  PubMed  Article  Google Scholar 

  39. Brooks PJ, Theruvathu JA. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol. 2005;35:187–93.

    CAS  PubMed  Article  Google Scholar 

  40. Yukawa Y, Muto M, Hori K, Nagayoshi H, Yokoyama A, Chiba T, et al. Combination of ADH1B*2/ALDH2*2 polymorphisms alters acetaldehyde-derived DNA damage in the blood of Japanese alcoholics. Cancer Sci. 2012;103:1651–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kitagawa K, Kawamoto T, Kunugita N, Tsukiyama T, Okamoto K, Yoshida A, et al. Aldehyde dehydrogenase (ALDH) 2 associates with oxidation of methoxyacetaldehyde; in vitro analysis with liver subcellular fraction derived from human and Aldh2 gene targeting mouse. FEBS Lett. 2000;476:306–11.

    CAS  PubMed  Article  Google Scholar 

  42. Zambelli VO, Gross ER, Chen CH, Gutierrez VP, Cury Y, Mochly-Rosen D. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain. Sci Transl Med. 2014;6:251ra118.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Matsumura Y, Li N, Alwaseem H, Pagovich OE, Crystal RG, Greenblatt MB, et al. Systemic adeno-associated virus-mediated gene therapy prevents the multiorgan disorders associated with aldehyde dehydrogenase 2 deficiency and chronic ethanol ingestion. Hum Gene Ther. 2020;31:163–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Katoh T, Kaneko S, Kohshi K, Munaka M, Kitagawa K, Kunugita N, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and oral cavity cancer. Int J Cancer. 1999;83:606–9.

    CAS  PubMed  Article  Google Scholar 

  45. Nomura T, Noma H, Shibahara T, Yokoyama A, Muramatusu T, Ohmori T. Aldehyde dehydrogenase 2 and glutathione S-transferase M 1 polymorphisms in relation to the risk for oral cancer in Japanese drinkers. Oral Oncol. 2000;36:42–6.

    CAS  PubMed  Article  Google Scholar 

  46. Matsuo K, Hamajima N, Shinoda M, Hatooka S, Inoue M, Takezaki T, et al. Gene-environment interaction between an aldehyde dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the risk of esophageal cancer. Carcinogenesis. 2001;22:913–6.

    CAS  PubMed  Article  Google Scholar 

  47. Boonyaphiphat P, Thongsuksai P, Sriplung H, Puttawibul P. Lifestyle habits and genetic susceptibility and the risk of esophageal cancer in the Thai population. Cancer Lett. 2002;186:193–9.

    CAS  PubMed  Article  Google Scholar 

  48. Yokoyama A, Kato H, Yokoyama T, Tsujinaka T, Muto M, Omori T, et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis. 2002;23:1851–9.

    CAS  PubMed  Article  Google Scholar 

  49. Enzinger PC, Mayer RJ. Esophageal cancer. N. Engl J Med. 2003;349:2241–52.

    CAS  PubMed  Article  Google Scholar 

  50. Yang CX, Matsuo K, Ito H, Hirose K, Wakai K, Saito T, et al. Esophageal cancer risk by ALDH2 and ADH2 polymorphisms and alcohol consumption: exploration of gene-environment and gene-gene interactions. Asian Pac J Cancer Prev. 2005;6:256–62.

    PubMed  Google Scholar 

  51. Chen YJ, Chen C, Wu DC, Lee CH, Wu CI, Lee JM, et al. Interactive effects of lifetime alcohol consumption and alcohol and aldehyde dehydrogenase polymorphisms on esophageal cancer risks. Int J Cancer. 2006;119:2827–31.

    CAS  PubMed  Article  Google Scholar 

  52. Guo YM, Wang Q, Liu YZ, Chen HM, Qi Z, Guo QH. Genetic polymorphisms in cytochrome P4502E1, alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in Gansu Chinese males. World J Gastroenterol. 2008;14:1444–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Hiyama T, Yoshihara M, Tanaka S, Chayama K. Genetic polymorphisms and head and neck cancer risk (Review). Int J Oncol. 2008;32:945–73.

    CAS  PubMed  Google Scholar 

  54. Boccia S, Hashibe M, Gallì P, De Feo E, Asakage T, Hashimoto T, et al. Aldehyde dehydrogenase 2 and head and neck cancer: a meta-analysis implementing a Mendelian randomization approach. Cancer Epidemiol Biomark Prev. 2009;18:248–54.

    CAS  Article  Google Scholar 

  55. Cui R, Kamatani Y, Takahashi A, Usami M, Hosono N, Kawaguchi T, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology. 2009;137:1768–75.

    CAS  PubMed  Article  Google Scholar 

  56. Oze I, Matsuo K, Hosono S, Ito H, Kawase T, Watanabe M, et al. Comparison between self-reported facial flushing after alcohol consumption and ALDH2 Glu504Lys polymorphism for risk of upper aerodigestive tract cancer in a Japanese population. Cancer Sci. 2010;101:1875–80.

    CAS  PubMed  Article  Google Scholar 

  57. Seitz HK, Becker P. Alcohol metabolism and cancer risk. Alcohol Res Health. 2007;30:38–41.

    PubMed  PubMed Central  Google Scholar 

  58. Seitz HK, Meier P. The role of acetaldehyde in upper digestive tract cancer in alcoholics. Transl Res. 2007;149:293–7.

    CAS  PubMed  Article  Google Scholar 

  59. Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.

    CAS  PubMed  Article  Google Scholar 

  60. Yang SJ, Yokoyama A, Yokoyama T, Huang YC, Wu SY, Shao Y, et al. Relationship between genetic polymorphisms of ALDH2 and ADH1B and esophageal cancer risk: a meta-analysis. World J Gastroenterol. 2010;16:4210–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Fang P, Jiao S, Zhang X, Liu Z, Wang H, Gao Y, et al. Meta-analysis of ALDH2 variants and esophageal cancer in Asians. Asian Pac J Cancer Prev. 2011;12:2623–7.

    PubMed  Google Scholar 

  62. Ji YB, Tae K, Ahn TH, Lee SH, Kim KR, Park CW, et al. ADH1B and ALDH2 polymorphisms and their associations with increased risk of squamous cell carcinoma of the head and neck in the Korean population. Oral Oncol. 2011;47:583–7.

    CAS  PubMed  Article  Google Scholar 

  63. Li QD, Li H, Wang MS, Diao TY, Zhou ZY, Fang QX, et al. Multi-susceptibility genes associated with the risk of the development stages of esophageal squamous cell cancer in Feicheng County. BMC Gastroenterol. 2011;11:74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Wang Y, Ji R, Wei X, Gu L, Chen L, Rong Y, et al. Esophageal squamous cell carcinoma and ALDH2 and ADH1B polymorphisms in Chinese females. Asian Pac J Cancer Prev. 2011;12:2065–8.

    PubMed  Google Scholar 

  65. Cadoni G, Boccia S, Petrelli L, Di Giannantonio P, Arzani D, Giorgio A, et al. A review of genetic epidemiology of head and neck cancer related to polymorphisms in metabolic genes, cell cycle control and alcohol metabolism. Acta Otorhinolaryngol Ital. 2012;32:1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gu H, Gong D, Ding G, Zhang W, Liu C, Jiang P, et al. A variant allele of ADH1B and ALDH2, is associated with the risk of esophageal cancer. Exp Ther Med. 2012;4:135–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Matsuo K, Rossi M, Negri E, Oze I, Hosono S, Ito H, et al. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese. Eur J Cancer Prev. 2012;21:193–8.

    CAS  PubMed  Article  Google Scholar 

  68. Gao Y, He Y, Xu J, Xu L, Du J, Zhu C, et al. Genetic variants at 4q21, 4q23 and 12q24 are associated with esophageal squamous cell carcinoma risk in a Chinese population. Hum Genet. 2013;132:649–56.

    CAS  PubMed  Article  Google Scholar 

  69. Wu M, Chang SC, Kampman E, Yang J, Wang XS, Gu XP, et al. Single nucleotide polymorphisms of ADH1B, ADH1C and ALDH2 genes and esophageal cancer: a population-based case-control study in China. Int J Cancer. 2013;132:1868–77.

    CAS  PubMed  Article  Google Scholar 

  70. Tsai ST, Wong TY, Ou CY, Fang SY, Chen KC, Hsiao JR, et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer. Int J Cancer. 2014;135:2424–36.

    CAS  PubMed  Article  Google Scholar 

  71. Li R, Zhao Z, Sun M, Luo J, Xiao Y. ALDH2 gene polymorphism in different types of cancers and its clinical significance. Life Sci. 2016;147:59–66.

    CAS  PubMed  Article  Google Scholar 

  72. Lachenmeier DW, Salaspuro M. ALDH2-deficiency as genetic epidemiologic and biochemical model for the carcinogenicity of acetaldehyde. Regulat Toxicol Pharmacol. 2017;86:128–36.

    CAS  Article  Google Scholar 

  73. Matejcic M, Gunter MJ, Ferrari P. Alcohol metabolism and oesophageal cancer: a systematic review of the evidence. Carcinogenesis. 2017;38:859–72.

    CAS  PubMed  Article  Google Scholar 

  74. Iwasaki M, Budhathoki S, Yamaji T, Tanaka-Mizuno S, Kuchiba A, Sawada N, et al. Inclusion of a gene-environment interaction between alcohol consumption and the aldehyde dehydrogenase 2 genotype in a risk prediction model for upper aerodigestive tract cancer in Japanese men. Cancer Sci. 2020;111:3835–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Salaspuro M. Local acetaldehyde: its key role in alcohol-related oropharyngeal cancer. Visc Med. 2020;36:167–73.

    PubMed  PubMed Central  Article  Google Scholar 

  76. Choi CK, Yang J, Kweon SS, Cho SH, Kim HY, Myung E, et al. Association between ALDH2 polymorphism and esophageal cancer risk in South Koreans: a case-control study. BMC Cancer. 2021;21:254.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Chang JS, Hsiao JR, Chen CH. ALDH2 polymorphism and alcohol-related cancers in Asians: a public health perspective. J Biomed Sci. 2017;24:19.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Joo Kang S, Shin CM, Sung J, Kim N. Association between ALDH2 polymorphism and gastric cancer risk in terms of alcohol consumption: a meta-analysis. Alcohol Clin Exp Res. 2021;45:6–14.

    PubMed  Article  CAS  Google Scholar 

  79. Zhang H, Fu L. The role of ALDH2 in tumorigenesis and tumor progression: targeting ALDH2 as a potential cancer treatment. Acta Pharmaceut Sin B. 2021;11:1400–11.

    CAS  Article  Google Scholar 

  80. Moreb JS, Ucar D, Han S, Amory JK, Goldstein AS, Ostmark B, et al. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact. 2012;195:52–60.

    CAS  PubMed  Article  Google Scholar 

  81. Gao YH, Wu ZX, Xie LQ, Li CX, Mao YQ, Duan YT, et al. VHL deficiency augments anthracycline sensitivity of clear cell renal cell carcinomas by down-regulating ALDH2. Nat Commun. 2017;8:15337.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Wang NN, Wang LH, Li Y, Fu SY, Xue X, Jia LN, et al. Targeting ALDH2 with disulfiram/copper reverses the resistance of cancer cells to microtubule inhibitors. Exp Cell Res. 2018;362:72–82.

    PubMed  Article  CAS  Google Scholar 

  83. Chen C-H, Budas GR, Churchill EN, Disatnik M-H, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321:1493–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Zhang T, Zhao Q, Ye F, Huang CY, Chen WM, Huang WQ. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radic Res. 2018;52:629–38.

    CAS  PubMed  Article  Google Scholar 

  85. Hirohashi K, Ohashi S, Amanuma Y, Nakai Y, Ida T, Baba K, et al. Protective effects of Alda-1, an ALDH2 activator, on alcohol-derived DNA damage in the esophagus of human ALDH2*2 (Glu504Lys) knock-in mice. Carcinogenesis. 2020;41:194–202.

    CAS  PubMed  Article  Google Scholar 

  86. Fujioka K, Gordon S. Effects of “Essential AD2” supplement on blood acetaldehyde levels in individuals who have aldehyde dehydrogenase (ALDH2) deficiency. Am J Ther. 2019;26:583–8.

    PubMed  Article  Google Scholar 

  87. Vakevainen S, Tillonen J, Salaspuro M. 4-Methylpyrazole decreases salivary acetaldehyde levels in aldh2-deficient subjects but not in subjects with normal aldh2. Alcohol Clin Exp Res. 2001;25:829–34.

    CAS  PubMed  Article  Google Scholar 

  88. Lipsky JJ, Shen ML, Naylor S. In vivo inhibition of aldehyde dehydrogenase by disulfiram. Chem Biol Interact. 2001;130–132:93–102.

    PubMed  Article  Google Scholar 

  89. Keung WM, Vallee BL. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA. 1993;90:1247–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Lukas SE, Penetar D, Su Z, Geaghan T, Maywalt M, Tracy M, et al. A standardized kudzu extract (NPI-031) reduces alcohol consumption in nontreatment-seeking male heavy drinkers. Psychopharmacology. 2013;226:65–73.

    CAS  PubMed  Article  Google Scholar 

  91. Penetar DM, Toto LH, Farmer SL, Lee DY, Ma Z, Liu Y, et al. The isoflavone puerarin reduces alcohol intake in heavy drinkers: a pilot study. Drug alcohol Depend. 2012;126:251–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Rajput H. Treatment of chronic alcoholism: an integrated approach. Altern Integ Med. 2014;3:1–4.

    Article  Google Scholar 

  93. Kushner S, Han D, Oscar-Berman M, William Downs B, Madigan MA, Giordano J, et al. Declinol, a complex containing kudzu, bitter herbs (gentian, tangerine peel) and bupleurum, significantly reduced Alcohol Use Disorders Identification Test (AUDIT) Scores in moderate to heavy drinkers: a pilot study. J Addict Res Ther. 2013;4:153.

    PubMed  PubMed Central  Article  Google Scholar 

  94. Matsumura Y, Stiles KM, Reid J, Frenk E, Cronin S, Pagovich OE, et al. Gene therapy correction of aldehyde dehydrogenase 2 deficiency. Mol Ther Methods Clin Dev. 2019;15:72–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Sanchez AC, Li C, Andrews B, Asenjo JA, Samulski RJ. AAV gene therapy for alcoholism: inhibition of mitochondrial aldehyde dehydrogenase enzyme expression in hepatoma cells. Hum Gene Ther. 2017;28:717–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Karahanian E, Rivera-Meza M, Tampier L, Quintanilla ME, Herrera-Marschitz M, Israel Y. Long-term inhibition of ethanol intake by the administration of an aldehyde dehydrogenase-2 (ALDH2)-coding lentiviral vector into the ventral tegmental area of rats. Addict Biol. 2015;20:336–44.

    CAS  PubMed  Article  Google Scholar 

  97. Rivera-Meza M, Vásquez D, Quintanilla ME, Lagos D, Rojas B, Herrera-Marschitz M, et al. Activation of mitochondrial aldehyde dehydrogenase (ALDH2) by ALDA-1 reduces both the acquisition and maintenance of ethanol intake in rats: a dual mechanism? Neuropharmacology. 2019;146:175–83.

    CAS  PubMed  Article  Google Scholar 

  98. Pastorino R, Iuliano L, Vecchioni A, Arzani D, Milic M, Annunziata F, et al. Effect of alcohol dehydrogenase-1B and -7 polymorphisms on blood ethanol and acetaldehyde concentrations in healthy subjects with a history of moderate alcohol consumption. Drug Test Anal. 2018;10:488–95.

    CAS  PubMed  Article  Google Scholar 

  99. National Institute on Alcohol Abuse and Alcoholism. Drinking levels defined. 2020. https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/moderate-binge-drinking. Accessed 12 Jan 2020.

  100. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA. 1989;86:4695–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Yokoyama M, Yokoyama A, Yokoyama T, Hamana G, Funazu K, Kondo S, et al. Mean corpuscular volume and the aldehyde dehydrogenase-2 genotype in male Japanese workers. Alcohol Clin Exp Res. 2003;27:1395–401.

    CAS  PubMed  Article  Google Scholar 

  102. Muto M, Takahashi M, Ohtsu A, Ebihara S, Yoshida S, Esumi H. Risk of multiple squamous cell carcinomas both in the esophagus and the head and neck region. Carcinogenesis. 2005;26:1008–12.

    CAS  PubMed  Article  Google Scholar 

  103. Asakage T, Yokoyama A, Haneda T, Yamazaki M, Muto M, Yokoyama T, et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases, and drinking, smoking and diet in Japanese men with oral and pharyngeal squamous cell carcinoma. Carcinogenesis. 2007;28:865–74.

    CAS  PubMed  Article  Google Scholar 

  104. Ding JH, Li SP, Cao HX, Wu JZ, Gao CM, Su P, et al. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males. World J Gastroenterol. 2009;15:2395–400.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Weinshenker D. Cocaine sobers up. Nat Med. 2010;16:969–70.

    CAS  PubMed  Article  Google Scholar 

  106. Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in East Asians. Keio J Med. 2010;59:115–30.

    PubMed  Article  Google Scholar 

  107. Dawsey SM, Lewin KJ, Wang GQ, Liu FS, Nieberg RK, Yu Y, et al. Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian, China. Cancer. 1994;74:1686–92.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Mohamed for editorial assistance.

Funding

These studies were supported, in part, by NIH R41AA027739 and R41AA028465.

Author information

Authors and Affiliations

Authors

Contributions

RAM, CMZ, KMS, and RGC conceived the ideas, researched the data for the manuscript, discussed the manuscript content, and wrote the manuscript. All authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Ronald G. Crystal.

Ethics declarations

Competing interests

RGC is a consultant and holds equity in LEXEO Therapeutics; LEXEO has an option with Weill Cornell Medical College to license the ALDH2 gene therapy program. RGC is also a co-inventor on a patent application related to this topic (US application number 16/321,023).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montel, R.A., Munoz-Zuluaga, C., Stiles, K.M. et al. Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency. Cancer Gene Ther 29, 889–896 (2022). https://doi.org/10.1038/s41417-021-00399-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00399-1

Search

Quick links