Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hedyotis diffusae Herba-Andrographis Herba inhibits the cellular proliferation of nasopharyngeal carcinoma and triggers DNA damage through activation of p53 and p21

A Correction to this article was published on 20 May 2022

This article has been updated

Abstract

Dysregulation of the cell cycle and the resulting aberrant cellular proliferation has been highlighted as a hallmark of cancer. Certain traditional Chinese medicines can inhibit cancer growth by inducing cell cycle arrest. In this study we explore the effect of Hedyotis diffusae Herba-Andrographis Herba on the cell cycle of nasopharyngeal carcinoma (NPC). Hedyotis diffusae Herba-Andrographis Herba-containing serum was prepared and then added to the cell culture medium. BrdU, comet, and FUCCI assays, western blot analysis and flow cytometry analysis revealed that Hedyotis diffusae Herba-Andrographis Herba treatment significantly alters cell proliferation, DNA damage, and cell cycle distribution. Xenograft mouse model experiments were performed, confirming these in vitro findings in vivo. Treatment with Hedyotis diffusae Herba-Andrographis Herba inhibited cell proliferation, promoted DNA damage, and arrested NPC cells progression from G1 to S phase. Further examination of the underlying molecular mechanisms revealed that treatment with Hedyotis diffusae Herba-Andrographis Herba increased the expression of p53 and p21, while reducing that of CCND1, Phospho-Rb, E2F1, γH2AX, and Ki-67 both in vivo and in vitro. Conversely, the inhibition of p53 and p21 could abolish the promoting effect of Hedyotis diffusae Herba-Andrographis Herba on the NPC cell cycle arrest at the G1 phase, contributing to the proliferation of NPC cells. Hedyotis diffusae Herba-Andrographis Herba suppressed the tumor growth in vivo. Overall, these findings suggest that Hedyotis Diffusae Herba-Andrographis prevent the progression of NPC by inducing NPC cell cycle arrest at the G1 phase through a p53/p21-dependent mechanism, providing a novel potential therapeutic treatment against NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hedyotis diffusae Herba-Andrographis Herba inhibits NPC cell proliferation.
Fig. 2: Hedyotis diffusae Herba-Andrographis Herba administration suppresses the tumorigenicity of NPC cells in vivo.
Fig. 3: Administration of Hedyotis diffusae Herba-Andrographis Herba facilitates DNA damage in C666-1 and SUNE-1 cells.
Fig. 4: Hedyotis diffusae Herba-Andrographis Herba treatment inhibits cell cycle progression in C666-1 and SUNE-1 cells.
Fig. 5: Hedyotis diffusae Herba-Andrographis Herba treatment blocks cell cycle progression in vivo.
Fig. 6: Hedyotis diffusae Herba-Andrographis Herba treatment restrains cell cycle progression resulting in decreased viability and proliferation of C666-1 and SUNE-1 cells by altering the p53/p21/CCND1 regulatory axis.
Fig. 7: Schematic diagram summarizing the effects of Hedyotis diffusae Herba-Andrographis Herba on cell cycle progression and proliferation of NPC.

Similar content being viewed by others

Change history

References

  1. Le QT, Colevas AD, O’Sullivan B, Lee AWM, Lee N, Ma B, et al. Current treatment landscape of nasopharyngeal carcinoma and potential trials evaluating the value of immunotherapy. J Natl Cancer Inst. 2019;111:655–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394:64–80.

    Article  PubMed  Google Scholar 

  3. Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal cancer: molecular landscape. J Clin Oncol. 2015;33:3346–55.

    Article  CAS  PubMed  Google Scholar 

  4. Nor Hashim NA, Ramzi NH, Velapasamy S, Alex L, Chahil JK, Lye SH, et al. Identification of genetic and non-genetic risk factors for nasopharyngeal carcinoma in a Southeast Asian population. Asian Pac J Cancer Prev. 2012;13:6005–10.

    Article  PubMed  Google Scholar 

  5. Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016;387:1012–24.

    Article  PubMed  Google Scholar 

  6. Wei KR, Zheng RS, Zhang SW, Liang ZH, Li ZM, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin J Cancer. 2017;36:90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. So TH, Chan SK, Lee VH, Chen BZ, Kong FM, Lao LX. Chinese medicine in cancer treatment—how is it practised in the east and the west? Clin Oncol (R Coll Radiol). 2019;31:578–88.

    Article  Google Scholar 

  8. Carmady B, Smith CA. Use of Chinese medicine by cancer patients: a review of surveys. Chin Med. 2011;6:22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liao YH, Lin CC, Lai HC, Chiang JH, Lin JG, Li TC. Adjunctive traditional Chinese medicine therapy improves survival of liver cancer patients. Liver Int. 2015;35:2595–602.

    Article  PubMed  Google Scholar 

  10. Lee YW, Chen TL, Shih YR, Tsai CL, Chang CC, Liang HH, et al. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer. 2014;120:1338–44.

    Article  PubMed  Google Scholar 

  11. Zhu D, Shao M, Yang J, Fang M, Liu S, Lou D, et al. Curcumin enhances radiosensitization of nasopharyngeal carcinoma via mediating regulation of tumor stem-like cells by a CircRNA network. J Cancer. 2020;11:2360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song YC, Hung KF, Liang KL, Chiang JH, Huang HC, Lee HJ, et al. Adjunctive Chinese herbal medicine therapy for nasopharyngeal carcinoma: clinical evidence and experimental validation. Head Neck. 2019;41:2860–72.

    Article  PubMed  Google Scholar 

  13. HU LWH, CUI N. Effect of herba Hedyotis diffusa on living murine ascites hepatoma H22 cells and T lymphocytes[J]. J Guangzhou Univ Traditional Chin Med. 2007;24:313–6.

    Google Scholar 

  14. Wang CY, Wang TC, Liang WM, Hung CH, Chiou JS, Chen CJ, et al. Effect of Chinese Herbal Medicine therapy on overall and cancer related mortality in patients with advanced nasopharyngeal carcinoma in Taiwan. Front Pharmacol. 2020;11:607413.

    Article  CAS  PubMed  Google Scholar 

  15. Lim JC, Chan TK, Ng DS, Sagineedu SR, Stanslas J, Wong WS. Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin Exp Pharmacol Physiol. 2012;39:300–10.

    Article  CAS  PubMed  Google Scholar 

  16. Wu B, Chen X, Zhou Y, Hu P, Wu D, Zheng G, et al. Andrographolide inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cell line C666-1 through LKB1-AMPK-dependent signaling pathways. Pharmazie. 2018;73:594–7.

    CAS  PubMed  Google Scholar 

  17. Su EY, Chu YL, Chueh FS, Ma YS, Peng SF, Huang WW, et al. Bufalin induces apoptotic cell death in human nasopharyngeal carcinoma cells through mitochondrial ROS and TRAIL pathways. Am J Chin Med. 2019;47:237–57.

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Hao Y, Guan G, Ma S, Zhu Z, Guo F, et al. Mukonal inhibits cell proliferation, alters mitochondrial membrane potential and induces apoptosis and autophagy in human CNE1 nasopharyngeal carcinoma cells. Med Sci Monit. 2019;25:1976–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan Z, Luo Y, Xia Y, Zhang X, Qin Y, Liu W, et al. Cinobufagin induces cell cycle arrest at the S phase and promotes apoptosis in nasopharyngeal carcinoma cells. Biomed Pharmacother. 2020;122:109763.

    Article  CAS  PubMed  Google Scholar 

  20. Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol. 2003;3:147–58.

    Article  CAS  PubMed  Google Scholar 

  21. Khole S, Mittal S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, et al. Andrographolide enhances redox status of liver cells by regulating microRNA expression. Free Radic Biol Med. 2019;130:397–407.

    Article  CAS  PubMed  Google Scholar 

  22. Fischer M, Quaas M, Steiner L, Engeland K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 2016;44:164–74.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Mao JW, Liu GY, Wang FG, Ju ZS, Zhou D, et al. MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med. 2019;8:712–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Weng C, Chen Y, Wu Y, Liu X, Mao H, Fang X, et al. Silencing UBE4B induces nasopharyngeal carcinoma apoptosis through the activation of caspase3 and p53. Onco Targets Ther. 2019;12:2553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zlotorynski E. Tumour suppressors: the dark side of p21. Nat Rev Cancer. 2016;16:481.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang X, Liu W. Long noncoding RNA highly upregulated in liver cancer activates p53-p21 pathway and promotes nasopharyngeal carcinoma cell growth. DNA Cell Biol. 2017;36:596–602.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Miao Y, Shang M, Liu M, Liu R, Pan E, et al. LincRNA-p21 leads to G1 arrest by p53 pathway in esophageal squamous cell carcinoma. Cancer Manag Res. 2019;11:6201–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vilgelm AE, Saleh N, Shattuck-Brandt R, Riemenschneider K, Slesur L, Chen SC, et al. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med. 2019;11:505.

    Article  CAS  Google Scholar 

  29. Li Y, Li Y, Zou Z, Li Y, Xie H, Yang H. Yin Yang Gong Ji pill is an ancient formula with antitumor activity against hepatoma cells. J Ethnopharmacol. 2020;248:112267.

    Article  CAS  PubMed  Google Scholar 

  30. Vodenkova S, Azqueta A, Collins A, Dusinska M, Gaivao I, Moller P, et al. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat Protoc. 2020;15:3844–78.

    Article  CAS  PubMed  Google Scholar 

  31. Bouchard G, Therriault H, Geha S, Berube-Lauziere Y, Bujold R, Saucier C, et al. Stimulation of triple negative breast cancer cell migration and metastases formation is prevented by chloroquine in a pre-irradiated mouse model. BMC Cancer. 2016;16:361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Huang H, Han Y, Yang X, Li M, Zhu R, Hu J, et al. HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget. 2017;8:103364–74.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guo Q, Yin X, Gao J, Wang X, Zhang S, Zhou X, et al. MiR-381-3p redistributes between cytosol and mitochondria and aggravates endothelial cell injury induced by reactive oxygen species. Tissue Cell. 2020;67:101451.

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Luo T, Yu Q, Dong W, Zhang H, Zou H. Isoorientin plays an important role in alleviating Cadmium-induced DNA damage and G0/G1 cell cycle arrest. Ecotoxicol Environ Saf. 2020;187:109851.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta R, Dong Y, Solomon PD, Wettersten HI, Cheng CJ, Min JN, et al. Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A. Proc Natl Acad Sci USA. 2014;111:E3062–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reuther C, Heinzle V, Nolting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) inhibitor NVP-CGM097 inhibits tumor cell proliferation and shows additive effects with 5-fluorouracil on the p53-p21-Rb-E2F1 cascade in the p53 wild type neuroendocrine tumor cell line GOT1. Neuroendocrinology. 2018;106:1–19.

    Article  CAS  PubMed  Google Scholar 

  37. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61.

    Article  CAS  PubMed  Google Scholar 

  38. Mao CG, Tao ZZ, Wan LJ, Han JB, Chen Z, Xiao BK. The efficacy of traditional Chinese Medicine as an adjunctive therapy in nasopharyngeal carcinoma: a systematic review and meta-analysis. J BUON. 2014;19:540–8.

    PubMed  Google Scholar 

  39. Zheng C, Han L, Wu S. A metabolic investigation of anticancer effect of G. glabra root extract on nasopharyngeal carcinoma cell line, C666-1. Mol Biol Rep. 2019;46:3857–64.

    Article  CAS  PubMed  Google Scholar 

  40. Poon RY. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol. 2014;50:339–44.

    Article  CAS  PubMed  Google Scholar 

  41. Ma J, Sun F, Li C, Zhang Y, Xiao W, Li Z, et al. Depletion of intermediate filament protein Nestin, a target of microRNA-940, suppresses tumorigenesis by inducing spontaneous DNA damage accumulation in human nasopharyngeal carcinoma. Cell Death Dis. 2014;5:e1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siddiqui MS, Francois M, Fenech MF, Leifert WR. Persistent gammaH2AX: a promising molecular marker of DNA damage and aging. Mutat Res Rev Mutat Res. 2015;766:1–19.

    Article  CAS  PubMed  Google Scholar 

  43. Dhuppar S, Mazumder A. Measuring cell cycle-dependent DNA damage responses and p53 regulation on a cell-by-cell basis from image analysis. Cell Cycle. 2018;17:1358–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liao Y, Ling J, Zhang G, Liu F, Tao S, Han Z, et al. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle. 2015;14:761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun B, Ross SM, Rowley S, Adeleye Y, Clewell RA. Contribution of ATM and ATR kinase pathways to p53-mediated response in etoposide and methyl methanesulfonate induced DNA damage. Environ Mol Mutagen. 2017;58:72–83.

    Article  CAS  PubMed  Google Scholar 

  46. Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal. 2010;22:1003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.

    Article  CAS  Google Scholar 

  48. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15:158–63.

    Article  CAS  PubMed  Google Scholar 

  50. Bendris N, Lemmers B, Blanchard JM. Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle. 2015;14:1786–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi MD, Lin HH, Lee YC, Chao JK, Lin RA, Chen JH. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem Biol Interact. 2008;174:201–10.

    Article  CAS  PubMed  Google Scholar 

  52. Liu Z, Long X, Chao C, Yan C, Wu Q, Hua S, et al. Knocking down CDK4 mediates the elevation of let-7c suppressing cell growth in nasopharyngeal carcinoma. BMC Cancer. 2014;14:274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ong CS, Zhou J, Ong CN, Shen HM. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3beta-Cyclin D1 pathway. Cancer Lett. 2010;298:167–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Twelfth Five-Year Support Plan (No. 2015BAI04B00), and National Natural Science Foundation of China (No. 81273985 & 81403440).

Author information

Authors and Affiliations

Authors

Contributions

ZL and SM conceived and designed research. SL and JL performed experiments. YD and ZY interpreted results of experiments. JL and LC analyzed data. QF and XC prepared figures. LD and RH drafted paper. QZ and HX edited and revised manuscript. All authors read and approved final version of manuscript.

Corresponding authors

Correspondence to Qinxiu Zhang or Hui Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The experiments involving animals were performed under approval of the Institutional Animal Care and Use Committee of the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine and in compliance with the recommendations in the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health. All efforts were made to minimize the number and suffering of the animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Mu, S., Li, S. et al. Hedyotis diffusae Herba-Andrographis Herba inhibits the cellular proliferation of nasopharyngeal carcinoma and triggers DNA damage through activation of p53 and p21. Cancer Gene Ther 29, 973–983 (2022). https://doi.org/10.1038/s41417-021-00385-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00385-7

This article is cited by

Search

Quick links