Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cabozantinib promotes erythroid differentiation in K562 erythroleukemia cells through global changes in gene expression and JNK activation

Abstract

Cabozantinib is a potent tyrosine kinase inhibitor with multiple targets including MET, VEGFR2, RET, KIT, and FLT3. Cabozantinib is widely used for the treatment of medullary thyroid cancer and renal cell carcinoma. We recently suggested cabozantinib as a potential therapeutic alternative for acute myeloid leukemia (AML) patients with FLT3-internal tandem duplication (FLT3-ITD). Here, we report that cabozantinib can promote differentiation in erythroid leukemia cells. We found that K562 erythroid leukemia cells treated with 1 μM cabozantinib for 72 h underwent erythroid lineage differentiation. Transcriptomic analysis revealed that various pathways associated with heme biosynthesis, hemoglobin production, and GATA1 targets were upregulated, whereas cell survival pathways were downregulated. Further examination revealed that cabozantinib-induced erythroid differentiation is at least in part regulated by JNK activation and phosphorylation. Levels of phosphorylated BCR-ABL, AKT, STAT5, ERK, and p38 also decreased following cabozantinib treatment. Therefore, we indicate that cabozantinib has dual functions. First, it induces K562 cell differentiation toward the erythroid lineage by upregulating heme biosynthesis, globin synthesis, and erythroid-associated reactions. Second, cabozantinib inhibits K562 cell proliferation by inhibiting the phosphorylation of BCR-ABL and the downstream MAPK, PI3K-AKT, and JAK-STAT signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cabozantinib inhibited K562 cell proliferation and induced differentiation toward erythroid lineage.
Fig. 2: Signaling pathways alternations after cabozantinib treatment.
Fig. 3: The involvement of JNK pathway in cabozantinib-induced differentiation.
Fig. 4: The effect of cabozantinib on cell cycle and associated molecules.

Similar content being viewed by others

References

  1. Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, et al. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell. 2016;167:171–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Roth M, Will B, Simkin G, Narayanagari S, Barreyro L, Bartholdy B, et al. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood. 2012;120:386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bots M, Verbrugge I, Martin BP, Salmon JM, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6.

    Article  CAS  PubMed  Google Scholar 

  6. Amatangelo MD, Quek L, Shih A, Stein EM, Roshal M, David MD, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130:732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol. 1997;17:1947–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belhacene N, Maulon L, Guerin S, Ricci JE, Mari B, Colin Y, et al. Differential expression of the Kell blood group and CD10 antigens: two related membrane metallopeptidases during differentiation of K562 cells by phorbol ester and hemin. FASEB J. 1998;12:531–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kim KM, Kim SH, Lee EY, Kim ND, Kang HS, Kim HD, et al. Extracellular signal-regulated kinase/90-KDA ribosomal S6 kinase/nuclear factor-kappa B pathway mediates phorbol 12-myristate 13-acetate-induced megakaryocytic differentiation of K562 cells. J Biol Chem. 2001;276:13186–91.

    Article  CAS  PubMed  Google Scholar 

  10. Uchida N, Haro-Mora JJ, Demirci S, Fujita A, Raines L, Hsieh MM, et al. High-level embryonic globin production with efficient erythroid differentiation from a K562 erythroleukemia cell line. Exp Hematol. 2018;62:7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park JI, Choi HS, Jeong JS, Han JY, Kim IH. Involvement of p38 kinase in hydroxyurea-induced differentiation of K562 cells. Cell Growth Differ. 2001;12:481–6.

    CAS  PubMed  Google Scholar 

  12. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther. 2011;10:2298–308.

    Article  CAS  PubMed  Google Scholar 

  13. Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol. 2013;9:1083–92.

    Article  CAS  PubMed  Google Scholar 

  14. Abdelaziz A, Vaishampayan U. Cabozantinib for the treatment of kidney cancer. Expert Rev Anticancer Ther. 2017;17:577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gill DM, Hahn AW, Hale P, Maughan BL. Overview of current and future first-Line systemic therapy for metastatic clear cell renal cell carcinoma. Curr Treat Options Oncol. 2018;19:6.

    Article  PubMed  Google Scholar 

  16. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu JW, Wang AN, Liao HA, Chen CY, Hou HA, Hu CY, et al. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer Lett. 2016;376:218–25.

    Article  CAS  PubMed  Google Scholar 

  18. Fathi AT, Blonquist TM, Hernandez D, Amrein PC, Ballen KK, McMasters M, et al. Cabozantinib is well tolerated in acute myeloid leukemia and effectively inhibits the resistance-conferring FLT3/tyrosine kinase domain/F691 mutation. Cancer. 2018;124:306–14.

    Article  CAS  PubMed  Google Scholar 

  19. Su KW, Ou DL, Fu YH, Tien HF, Hou HA, Lin LI Repurposing cabontinib withtherapeutic otential inKIT-drivent(8;21) acutemyeloid leukaemias. Cancer Gene Therapy. 2021. https://doi.org/10.1038/s41417-021-00329-1.

  20. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gazel A, Banno T, Walsh R, Blumenberg M. Inhibition of JNK promotes dfferentiation of epidermal keratinocytes. J Biol Chem. 2006;281:20530–41.

    Article  CAS  PubMed  Google Scholar 

  22. Mian AA, Schüll M, Zhao Z, Oancea C, Hundertmark A, Beissert T, et al. The gatekeeper mutation T315I confers resistance against small molecules by increasing or restoring the ABL-kinase activity accompanied by aberrant transphosphorylation of endogenous BCR, even in loss-of-function mutants of BCR/ABL. Leukemia. 2009;23:1614–21.

    Article  CAS  PubMed  Google Scholar 

  23. Smith CC, Zhang C, Lin KC, Lasater EA, Zhang Y, Massi E, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “Gatekeeper” F691L mutation with PLX3397. Cancer Discov. 2015;5:668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005;25:1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood. 2000;96:2641–8.

    Article  CAS  PubMed  Google Scholar 

  26. Frisan E, Vandekerckhove J, de Thonel A, Pierre-Eugene C, Sternberg A, Arlet JB, et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood. 2012;19:1532–42.

    Article  CAS  Google Scholar 

  27. Arlet JB, Ribeil JA, Guillem F, Negre O, Hazoume A, Marcion G, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514:242–6.

    Article  CAS  PubMed  Google Scholar 

  28. De Rosa G, Andolfo I, Marra R, Manna F, Rosato BE, Iolascon A, et al. RAP-011 rescues the disease phenotype in a cellular model of congenital dyserythropoietic anemia Type II by Inhibiting the SMAD2-3 pathway. Int J Mol Sci. 2020;21:5577.

    Article  PubMed Central  CAS  Google Scholar 

  29. Guillem F, Dusslot M, Colin E, Suriyun T, Arlet JB, Goudin N, et al. XPO1 regulates erythroid differentiation and is a new target for the treatment of β-thalassemia. Haematologica. 2020;105:2240–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dong XM, Zhao K, Zheng WW, Xu CW, Zhang MJ, Yin RH, et al. EDAG mediates Hsp70 nuclear localization in erythroblasts and rescues dyserythropoiesis in myelodysplastic syndrome. FASEB J. 2020;34:8416–27.

    Article  CAS  PubMed  Google Scholar 

  31. Jacquel A, Colosetti P, Grosso S, Belhacene N, Puissant A, Marchetti S, et al. Apoptosis and erythroid differentiation triggered by Bcr-Abl inhibitors in CML cell lines are fully distinguishable processes that exhibit different sensitivity to caspase inhibition. Oncogene. 2007;26:2445–58.

    Article  CAS  PubMed  Google Scholar 

  32. Hietakangas V, Elo I, Rosenstrom H, Coffey ET, Kyriakis JM, Eriksson JE. Activation of the MKK4-JNK pathway during erythroid differentiation of K562 cells is inhibited by the heat shock factor 2-beta isoform. FEBS Lett. 2001;505:168–72.

    Article  CAS  PubMed  Google Scholar 

  33. Nagata Y, Takahashi N, Davis RJ, Todokoro K. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood. 1998;92:1859–69.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu JF, Li ZJ, Zhang GS, Meng K, Kuang WY, Li J, et al. Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3/AKT signalings. PLoS ONE. 2011;6:e23720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagata Y, Todokoro K. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood. 1999;94:853–63.

    Article  CAS  PubMed  Google Scholar 

  36. Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood. 2000;95:2391–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sawafuji K, Miyakawa Y, Kizaki M, Ikeda Y. Cyclosporin A induces erythroid differentiation of K562 cells through p38 MAPK and ERK pathways. Am J Hematol. 2003;72:67–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lord KA, Abdollahi A, Hoffman-Liebermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol. 1993;13:841–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kohmura K, Miyakawa Y, Kawai Y, Ikeda Y, Kizaki M. Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. J Cell Physiol. 2004;198:370–6.

    Article  CAS  PubMed  Google Scholar 

  40. Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD. BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem. 2000;275:39223–30.

    Article  CAS  PubMed  Google Scholar 

  41. Gómez-Casares MT, García-Alegria E, López-Jorge CE, Ferrándiz N, Blanco R, Alvarez S, et al. MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP. Oncogene. 2013;32:2239–46.

    Article  PubMed  CAS  Google Scholar 

  42. Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J. p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem. 2005;280:18120–9.

    Article  CAS  PubMed  Google Scholar 

  43. Yang X, Kui L, Tang M, Li D, Wei K, Chen W, et al. High-throughput transcriptome profiling in drug and biomarker discovery. Front Genet. 2020;11:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng C, Wang W, Yu X, Yang L, Chen S, Li Y. Pathways related to PMA-differentiated THP1 human monocytic leukemia cells revealed by RNA-Seq. Sci China Life Sci. 2015;58:1282–7.

    Article  CAS  PubMed  Google Scholar 

  45. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  48. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from Taiwan Health Foundation, The National Taiwan University Hospital (NTUH106-003417), the Ministry of Health and Welfare (MOHW109-TDU-B-211-134009), and the Ministry of Science and Technology (MOST105-2320-B-002-051-MY3 and MOST108-2320-B-002-050-MY3), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsiung-Fei Chien or Liang-In Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, YH., Ou, DL., Yang, YR. et al. Cabozantinib promotes erythroid differentiation in K562 erythroleukemia cells through global changes in gene expression and JNK activation. Cancer Gene Ther 29, 784–792 (2022). https://doi.org/10.1038/s41417-021-00358-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00358-w

This article is cited by

Search

Quick links