Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heat shock protein-90alpha (Hsp90α) stabilizes hypoxia-inducible factor-1α (HIF-1α) in support of spermatogenesis and tumorigenesis

A Correction to this article was published on 19 April 2021

A Correction to this article was published on 19 April 2021

This article has been updated

Abstract

Hypoxia-inducible factor-1 (HIF-1), a master transcriptional factor for protecting cells from hypoxia, plays a critical role in spermatogenesis and tumorigenesis. For the past two decades, numerous small molecule inhibitors that block mRNA synthesis, protein translation, or DNA binding of HIF-1α have entered clinical trials. To date, few have advanced to FDA approval for clinical applications due to limited efficacy at their toxicity-tolerable dosages. New windows for developing effective and safe therapeutics require better understanding of the specific mechanism of action. The finding that a chaperone-defective mutant heat shock protein-90-alpha (Hsp90α) blocks spermatogenesis, a known hypoxia-driven process in mouse testis prompted us to focus on the role of Hsp90α in HIF-1α. Here we demonstrate that Hsp90α gene knockout causes a dramatic reduction of the high steady-state level of HIF-1α in the testis, blocking sperm production and causing infertility of the mice. In HIF-1α-dependent tumor cells, we found that Hsp90α forms protein complexes with hypoxia-elevated HIF-1α and Hsp90α knockout prevents hypoxia-induced HIF-1α accumulation. In contrast, downregulation of Hsp90β had little effect on hypoxia-induced accumulation of HIF-1α. Instead, Hsp90β protects signaling molecules responsible for cellular homeostasis from assault by 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), a general ATPase inhibitor of both Hsp90α and Hsp90β. Since targeting Hsp90β gene is lethal in both cultured cells and in mice, our new finding explains the toxicity of the previous inhibitor trials and identifies the specific binding of Hsp90α to HIF-1α as a new therapeutic window for developing safer and more effective treatment of male infertility and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of Hsp90α gene-knockout mice.
Fig. 2: Hsp90α gene knockout destabilizes HIF-1α in mouse testis.
Fig. 3: Hsp90α knockout prevents HIF-1α accumulation in tumor cells in response to hypoxia.
Fig. 4: Hsp90α and Hsp90β on HIF-1α stability in different cellular contexts.
Fig. 5: More Hsp90α protects HIF-1α than Hsp90β in intact cells.
Fig. 6: Hsp90α-knockout or knockdown has little effect on signaling pathways for cell survival and proliferation.
Fig. 7: Hsp90β protects key signaling molecules for homeostasis under 17-AAG assault.

Similar content being viewed by others

Change history

References

  1. Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001;154:267–74.

    Article  CAS  Google Scholar 

  2. Biebl MM, Buchner J. Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol. 2019;11:a034017.

    Article  CAS  Google Scholar 

  3. Neckers L, Workman P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res. 2012;18:64–76.

    Article  CAS  Google Scholar 

  4. Sidera K, Patsavoudi E. HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Disco. 2014;9:1–20.

    Article  CAS  Google Scholar 

  5. Khandelwal A, Crowley VM, Blagg BS. Natural product inspired N‐terminal Hsp90 inhibitors: from bench to bedside? Med Res Rev. 2016;36:92–118.

    Article  CAS  Google Scholar 

  6. Voss AK, Thomas T, Gruss P. Mice lackingt HSP90beta fail to develop a placental labyrinth. Development 2000;127:1–11.

    Article  CAS  Google Scholar 

  7. Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, et al. The molecular chaperone Hsp90α is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One. 2010;5:e15770.

    Article  CAS  Google Scholar 

  8. Imai T, Kato Y, Kajiwara C, Mizukami S, Ishige I, Ichiyanagi T, et al. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. Proc Natl Acad Sci. 2011;108:16363–8.

    Article  CAS  Google Scholar 

  9. Zou M, Bhatia A, Dong H, Jayaprakash P, Guo J, Sahu D, et al. Evolutionarily conserved dual lysine motif determines the non-chaperone function of secreted Hsp90alpha in tumour progression. Oncogene 2017;36:2160–71.

    Article  CAS  Google Scholar 

  10. Velickovic LJ, Stefanovic V. Hypoxia and spermatogenesis. Int J Nephrol Urol. 2014;46:887–94.

    Article  Google Scholar 

  11. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  Google Scholar 

  12. Gruber M, Mathew LK, Runge AC, Garcia JA, Simon MC. EPAS1 is required for spermatogenesis in the postnatal mouse testis. Biol Reprod. 2010;82:1227–36.

    Article  CAS  Google Scholar 

  13. Takahashi N, Davy PM, Gardner LH, Mathews J, Yamazaki Y, Allsopp RC. Hypoxia inducible factor 1 alpha is expressed in germ cells throughout the murine life cycle. PLoS One. 2016;11:e0154309.

    Article  Google Scholar 

  14. Marti HH, Kathschinski DRM, Wagner KF, Schäffer L, Stier B, Wenger RH. Isoform-specific expression of hypoxia-inducible factor-1α during the late stages of mouse spermiogenesis. Mol Endocrinol. 2002;16:234–43.

    CAS  PubMed  Google Scholar 

  15. Depping R, Hägele S, Wagner KF, Wiesner RJ, Camenisch G, Wenger RH, et al. A dominant-negative isoform of hypoxia-inducible factor-1α specifically expressed in human testis. Biol Reprod. 2004;71:331–9.

    Article  CAS  Google Scholar 

  16. Sahu D, Zhao Z, Tsen F, Cheng CF, Park R, Situ AJ, et al. A potentially common peptide target in secreted heat shock protein-90α for hypoxia-inducible factor-1α–positive tumors. Mol Biol Cell. 2012;23:602–13.

    Article  CAS  Google Scholar 

  17. Luo JC, Shibuya M. A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1α, 2α and 3α). Oncogene 2001;20:1435–44.

    Article  CAS  Google Scholar 

  18. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci. 1995;92:5510–4.

    Article  CAS  Google Scholar 

  19. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9:285–96.

    Article  CAS  Google Scholar 

  20. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA. 1994;91:8324–8.

    Article  CAS  Google Scholar 

  21. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, et al. A high -affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Nature 2003;425:407–10.

    Article  CAS  Google Scholar 

  22. Hostein I, Robertson D, Distefano F, Workman P, Clarke PA. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 2001;61:4003–9.

    CAS  PubMed  Google Scholar 

  23. Solit DB, Zheng FF, Drobnjak M, Münster PN, Higgins B, Verbel D, et al. 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res. 2002;8:986–93.

    CAS  PubMed  Google Scholar 

  24. Yao JQ, Liu QH, Chen X, Yang Q, Xu ZY, Hu F, et al. Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells. J Biomed Sci. 2010;17:30.

    Article  Google Scholar 

  25. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12:149–62.

    Article  CAS  Google Scholar 

  26. Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol. 1999;209:254–67.

    Article  CAS  Google Scholar 

  27. Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Ame J Anat. 1956;99:507–16.

    Article  CAS  Google Scholar 

  28. Li W, Li Y, Guan S, Fan J, Cheng CF, Bright AM, et al. Extracellular heat shock protein‐90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 2007;26:1221–33.

    Article  CAS  Google Scholar 

  29. Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharm Ther. 2016;164:152–69.

    Article  CAS  Google Scholar 

  30. Fallah J, Rini BI. HIF inhibitors: status of current clinical development. Curr Oncol Rep. 2019;21:6.

    Article  Google Scholar 

  31. Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem. 2002;277:29936–44.

    Article  CAS  Google Scholar 

  32. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, et al. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol. 2004;6:507–14.

    Article  CAS  Google Scholar 

  33. Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta Mol Cell Res. 2012;1823:730–41.

    Article  CAS  Google Scholar 

  34. Baker-Williams AJ, Hashmi F, Budzyński MA, Woodford MR, Gleicher S, Himanen SV, et al. Co-chaperones TIMP2 and AHA1 competitively regulate extracellular HSP90:client MMP2 activity and matrix proteolysis. Cell Rep. 2019;28:1894–906.

    Article  CAS  Google Scholar 

  35. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC. Hydrocephalus in children. Lancet 2016;387:20–26.

    Article  Google Scholar 

  36. Morgan FW, Stewart JA, Smith AN, Tarnuzzer RW. Differential expression of stress response genes in the H-Tx rat model of congenital hydrocephalus. Brain Res Mol Brain Res. 2005;138:273–90.

    Article  CAS  Google Scholar 

  37. Gezen-Ak D, Dursun E, Hanağası H, Bilgiç B, Lohman E, Araz ÖS, et al. BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J Alzheimers Dis. 2013;37:185–95.

    Article  CAS  Google Scholar 

  38. Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, et al. Defective brain development in mice lacking the Hif-1α gene in neural cells. Mol Cell Biol. 2003;23:6739–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We have neither financial nor non-financial conflict of interest. This work is supported by NIH grants GM067100 (to W. L.), and grant W81XWH-1810558 from the Congressionally Directed Medical Research Program (to M. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Chang, C., Hao, M. et al. Heat shock protein-90alpha (Hsp90α) stabilizes hypoxia-inducible factor-1α (HIF-1α) in support of spermatogenesis and tumorigenesis. Cancer Gene Ther 28, 1058–1070 (2021). https://doi.org/10.1038/s41417-021-00316-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00316-6

Search

Quick links