Emerging roles for the GPI-anchored tumor suppressor OPCML in cancers


OPCML is a highly conserved glycosyl phosphatidylinositol (GPI)-anchored protein belonging to the IgLON family of cell adhesion molecules. OPCML functions as a tumor suppressor and is silenced in over 80% of ovarian cancers by loss of heterozygosity and by epigenetic mechanisms. OPCML inactivation is also observed in many other cancers suggesting a conservation of tumor suppressor function. Although epigenetic silencing and subsequent loss of OPCML expression correlate with poor progression-free and overall patient survival, its mechanism of action is only starting to be fully elucidated. Recent discoveries have demonstrated that OPCML exerts its tumor suppressor effect by inhibiting several cancer hallmark phenotypes in vitro and abrogating tumorigenesis in vivo, by downregulating/inactivating a specific spectrum of Receptor Tyrosine Kinases (RTKs), including EphA2, FGFR1, FGFR3, HER2, HER4, and AXL. This modulation of RTKs can also sensitize ovarian and breast cancers to lapatinib, erlotinib, and anti-AXL therapies. Furthermore, OPCML has also been shown to function in synergy with the tumor suppressor phosphatase PTPRG to inactivate pro-metastatic RTKs such as AXL. Recently, the identification of inactivating point mutations and the elucidation of the crystal structure of OPCML have provided valuable insights into its structure-function relationships, giving rise to its potential as an anti-cancer therapeutic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Domain organization and structural biology of IgLON family members.
Fig. 2: OPCML modulation of oncogenic pathways.
Fig. 3: Cancer-associated mutations in OPCML.


  1. 1.

    Sellar GC, Watt KP, Rabiasz GJ, Stronach EA, Li L, Miller EP, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet. 2003;34:337–43.

    CAS  PubMed  Google Scholar 

  2. 2.

    McKie AB, Vaughan S, Zanini E, Okon IS, Louis L, de Sousa C, et al. The OPCML tumor suppressor functions as a cell surface repressor-adaptor, negatively regulating receptor tyrosine kinases in epithelial ovarian. Cancer Cancer Discov. 2012;2:156–71.

    CAS  PubMed  Google Scholar 

  3. 3.

    Antony J, Zanini E, Kelly Z, Tan TZ, Karali E, Alomary M, et al. The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer. EMBO Rep. 2018;19:e45670.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zanini E, Louis LS, Antony J, Karali E, Okon IS, McKie AB, et al. The tumor suppressor protein OPCML potentiates anti-EGFR and anti-HER2 targeted therapy in HER2-positive ovarian and breast cancer. Mol Cancer Ther. 2017;16:2246–2256.

  5. 5.

    Birtley JR, Alomary M, Zanini E, Antony J, Maben Z, Weaver GC, et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun 2019;10:3134.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Cho TM, Hasegawa JI, Ge BL, Loh HH. Purification to apparent homogeneity of a μ-type opioid receptor from rat brain. Proc Natl Acad Sci USA. 1986;83:4138–42.

    CAS  PubMed  Google Scholar 

  7. 7.

    Schofield PR, McFarland KC, Hayflick JS, Wilcox JN, Cho TM, Roy S, et al. Molecular characterization of a new immunoglobulin superfamily protein with potential roles in opioid binding and cell contact. EMBO J. 1989;8:489–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lodge AP, Howard MR, McNamee CJ, Moss DJ. Co-localisation, heterophilic interactions and regulated expression of IgLON family proteins in the chick nervous system. Mol Brain Res. 2000;82:84–94.

    CAS  PubMed  Google Scholar 

  9. 9.

    Pimenta AF, Fischer I, Levitt P. cDNA cloning and structural analysis of the human limbic-system-associated membrane protein (LAMP). Gene. 1996;170:189–95.

    CAS  PubMed  Google Scholar 

  10. 10.

    Gil OD, Zanazzi G, Struyk AF, Salzer JL. Neurotrimin mediates bifunctional effects on neurite outgrowth via homophilic and heterophilic interactions. J Neurosci. 1998;18:9312–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y, et al. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem. 1999;274:8224–30.

    CAS  PubMed  Google Scholar 

  12. 12.

    Sabater L, Gaig C, Gelpi E, Bataller L, Lewerenz J, Torres-Vega E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 2014;13:575–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Reed JE, Dunn JR, du Plessis DG, Shaw EJ, Reeves P, Gee A. L. et al. Expression of cellular adhesion molecule “OPCML” is down-regulated in gliomas and other brain tumours. Neuropathol Appl Neurobiol. 2007;33:77–85.

    CAS  PubMed  Google Scholar 

  15. 15.

    Miyata S, Taguchi K, Maekawa S. Dendrite-associated opioid-binding cell adhesion molecule localizes at neurosecretory granules in the hypothalamic magnocellular neurons. Neuroscience. 2003;122:169–81.

    CAS  PubMed  Google Scholar 

  16. 16.

    Miyata S, Matsumoto N, Maekawa S. Polarized targeting of IgLON cell adhesion molecule OBCAM to dendrites in cultured neurons. Brain Res. 2003;979:129–36.

    CAS  PubMed  Google Scholar 

  17. 17.

    Miyata S, Matsumoto N, Taguchi K, Akagi A, Iino T, Funatsu N, et al. Biochemical and ultrastructural analyses of iglon cell adhesion molecules, kilon and obcam in the rat brain. Neuroscience. 2003;117:645–58.

    CAS  PubMed  Google Scholar 

  18. 18.

    Eagleson KL, Pimenta AF, Burns MM, Fairfull LD, Cornuet PK, Zhang L, et al. Distinct domains of the limbic system-associated membrane protein (LAMP) mediate discrete effects on neurite outgrowth. Mol Cell Neurosci. 2003;24:725–40.

    CAS  PubMed  Google Scholar 

  19. 19.

    Itoh S, Hachisuka A, Kawasaki N, Hashii N, Teshima R, Hayakawa T, et al. Glycosylation analysis of IgLON family proteins in rat brain by liquid chromatography and multiple-stage mass spectrometry. Biochemistry. 2008;47:10132–54.

    CAS  PubMed  Google Scholar 

  20. 20.

    Reed J, McNamee C, Rackstraw S, Jenkins J, Moss D. Diglons are heterodimeric proteins composed of IgLON subunits, and Diglon-CO inhibits neurite outgrowth from cerebellar granule cells. J Cell Sci. 2004;117:3961–73.

    CAS  PubMed  Google Scholar 

  21. 21.

    Gil OD, Zhang L, Chen S, Ren YQ, Pimenta A, Zanazzi G, et al. Complementary expression and heterophilic interactions between igLON family members neurotrimin and LAMP. J Neurobiol. 2002;51:190–204.

    CAS  PubMed  Google Scholar 

  22. 22.

    Ranaivoson FM, Turk LS, Ozgul S, Kakehi S, Daake S, von, Lopez N, et al. A proteomic screen of neuronal cell-surface molecules reveals IgLONs as structurally conserved interaction modules at the synapse. Structure. 2019;27:893–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ntougkos E, Rush R, Scott D, Frankenberg T, Gabra H, Smyth JF, et al. The IgLON family in epithelial ovarian cancer: expression profiles and clinicopathologic correlates. Clin Cancer Res. 2005;11:5764–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Chen J, Lui W-O, Vos MD, Clark GJ, Takahashi M, Schoumans J, et al. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell. 2003;4:405–13.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kresse SH, Ohnstad HO, Paulsen EB, Bjerkehagen B, Szuhai K. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes Chromosomes Cancer. 2009;693:679–93.

    Google Scholar 

  26. 26.

    Zhao J, Bradfield JP, Li M, Wang K, Zhang H, Kim CE, et al. The role of obesity-associated loci identified in genome-wide association studies in the determination of pediatric BMI. Obesity. 2009;17:2254–7.

    PubMed  Google Scholar 

  27. 27.

    Takita J, Chen Y, Okubo J, Sanada M, Adachi M, Ohki K, et al. Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in neuroblastoma. Cancer Sci. 2011;102:1645–50.

    CAS  PubMed  Google Scholar 

  28. 28.

    Ye M, Parente F, Li X, Perryman MB, Zelante L, Wynshaw-Boris A, et al. Gene-targeted deletion of OPCML and Neurotrimin in mice does not yield congenital heart defects. Am J Med Genet Part A. 2014;164:966–74.

    CAS  Google Scholar 

  29. 29.

    Gabra H, Taylor L, Cohen B, Lessels A, Eccles D, Leonard R, et al. Chromosome 11 allele imbalance and clinicopathological correlates in ovarian tumours. Br J Cancer. 1995;72:367–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Thiagalingam S, Foy RL, Cheng K, Lee HJ, Thiagalingam A, Ponte JF. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its occurrence. Curr Opin Oncol. 2002;14:65–72.

    CAS  PubMed  Google Scholar 

  31. 31.

    Stronach EA, Sellar GC, Blenkiron C, Rabiasz GJ, Taylor KJ, Miller EP, et al. Identification of clinically relevant genes on chromosome 11 in a functional model of ovarian cancer tumor suppression. Cancer Res. 2003;63:8648–55.

    CAS  PubMed  Google Scholar 

  32. 32.

    Czekierdowski A, S C, M S, M W, P K, J. K. Opioid-binding protein/cell adhesion molecule-like (OPCML) gene and promoter methylation status in women with ovarian cancer. Neuroendocrinol. 2006;27:609–13.

    CAS  Google Scholar 

  33. 33.

    Ye F, Zhang S-F, Xie X, Lu W-G. OPCML gene promoter methylation and gene expression in tumor and stroma cells of invasive cervical carcinoma. Cancer Invest. 2008;26:569–74.

    CAS  PubMed  Google Scholar 

  34. 34.

    Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M, et al. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer. 2008;7:62.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mei FC, Young TW, Liu J, Cheng X. RAS-mediated epigenetic inactivation of OPCML in oncogenic transformation of human ovarian surface epithelial cells. FASEB J. 2006;20:497–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Duarte-Pereira S, Paiva F, Costa VL, Ramalho-Carvalho J, Savva-Bordalo J, Rodrigues A, et al. Prognostic value of opioid binding protein/cell adhesion molecule-like promoter methylation in bladder carcinoma. Eur J Cancer. 2011;47:1106–14.

    CAS  PubMed  Google Scholar 

  37. 37.

    Wu Y, Davison J, Qu X, Morrissey C, Storer B, Brown L, et al. Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer. Epigenetics. 2016;11:247–58.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Xing X, Cai W, Ma S, Wang Y, Shi H, Li M, et al. Down-regulated expression of OPCML predicts an unfavorable prognosis and promotes disease progression in human gastric cancer. BMC Cancer. 2017;17:268.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Cui Y, Ying Y, van Hasselt A, Ng KM, Yu J, Zhang Q, et al. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation. PLoS ONE. 2008;3:e2990.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    McNamee CJ, Reed JE, Howard MR, Lodge AP, Moss DJ. Promotion of neuronal cell adhesion by members of the IgLON family occurs in the absence of either support or modification of neurite outgrowth. J Neurochem. 2002;80:941–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Pike LJ. Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta. 2005;1746:260–73.

    CAS  PubMed  Google Scholar 

  42. 42.

    Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol. 1996;16:5276–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl J Med. 2006;355:2733–43.

    CAS  PubMed  Google Scholar 

  46. 46.

    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non–small-cell lung cancer. N. Engl J Med. 2005;353:123–32.

    CAS  PubMed  Google Scholar 

  47. 47.

    Antony J, Huang RYJ, AXL-driven EMT. state as a targetable conduit in cancer. Cancer Res. 2017;77:3725–32.

    CAS  PubMed  Google Scholar 

  48. 48.

    Huang RY-J, Antony J, Tan TZ, Tan DS-P. Targeting the AXL signaling pathway in ovarian cancer. Mol Cell Oncol. 2017;4:e1263716.

    PubMed  Google Scholar 

  49. 49.

    Antony J, Tan TZ, Kelly Z, Low J, Choolani M, Recchi C, et al. The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci Signal. 2016;9:ra97–ra97.

    PubMed  Google Scholar 

  50. 50.

    Gjerdrum C, Tiron C, Hoiby T, Stefansson I, Haugen H, Sandal T, et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA. 2010;107:1124–9.

    CAS  PubMed  Google Scholar 

  51. 51.

    Elkabets M, Pazarentzos E, Juric D, Sheng Q, Pelossof RA, Brook S, et al. AXL mediates resistance to pi3kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell. 2015;27:533–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19:279–90.

    CAS  PubMed  Google Scholar 

  53. 53.

    Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Göhring W, Ullrich A, et al. Structural basis for Gas6-Axl signalling. EMBO J. 2006;25:80–7.

    CAS  PubMed  Google Scholar 

  54. 54.

    Shu ST, Sugimoto Y, Liu S, Chang HL, Ye W, Wang LS, et al. Function and regulatory mechanisms of the candidate tumor suppressor receptor Protein Tyrosine Phosphatase Gamma (PTPRG) in breast cancer cells. Anticancer Res. 2010;30:1937–46.

    CAS  PubMed  Google Scholar 

  55. 55.

    Nieto MA, Huang RY-J, Jackson RA, Thiery JP. EMT: 2016. Cell 2016;166:21–45.

    CAS  PubMed  Google Scholar 

  56. 56.

    Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell 2013;23:272–3.

    CAS  PubMed  Google Scholar 

  57. 57.

    Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871–90.

    CAS  PubMed  Google Scholar 

  58. 58.

    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    CAS  PubMed  Google Scholar 

  59. 59.

    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    CAS  PubMed  Google Scholar 

  60. 60.

    Zurzolo, C. Synergistic inactivation of AXL: a (cross)road to cure ovarian cancer? EMBO Rep. 2018;19:e46492.

  61. 61.

    Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70:1544–54.

    CAS  PubMed  Google Scholar 

  62. 62.

    Li C, Tang L, Zhao L, Li L, Xiao Q, Luo X, et al. OPCML is frequently methylated in human colorectal cancer and its restored expression reverses EMT via downregulation of smad signaling. Am J Cancer Res. 2015;5:1635–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Brown KA, Ham A-JL, Clark CN, Meller N, Law BK, Chytil A, et al. Identification of novel Smad2 and Smad3 associated proteins in response to TGF-β1. J Cell Biochem. 2008;105:596–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wang LH, Chu FF, Ren DH, Du X. Effect of OPCML gene on the biological behavior of gastric cancer cell line AGS. J Biol Regul Homeost Agents. 2016;30:529–34.

    CAS  PubMed  Google Scholar 

  65. 65.

    Wu SY, Sood AK. New roles opined for OPCML. Cancer Discov. 2012;2:115–6.

    CAS  PubMed  Google Scholar 

Download references


JA, EZ, JRB, HG, and CR received no financial assistance.

Author information



Corresponding author

Correspondence to Chiara Recchi.

Ethics declarations

Conflict of interest

HG has ownership interest (including patents) to develop OPCML-based therapeutics. He is also Chief Medical Officer at BergenBio (producer of the AXL inhibitor BGB324). The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antony, J., Zanini, E., Birtley, J.R. et al. Emerging roles for the GPI-anchored tumor suppressor OPCML in cancers. Cancer Gene Ther (2020). https://doi.org/10.1038/s41417-020-0187-6

Download citation