Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

ERK3/MAPK6 is required for KRAS-mediated NSCLC tumorigenesis

A Correction to this article was published on 09 November 2020

This article has been updated

Abstract

KRAS is one of the most frequently mutated oncogenes, especially in lung cancers. Targeting of KRAS directly or the downstream effector signaling machinery is of prime interest in treating lung cancers. Here, we uncover that ERK3, a ubiquitously expressed atypical MAPK, is required for KRAS-mediated NSCLC tumors. ERK3 is highly expressed in lung cancers, and oncogenic KRAS led to the activation and stabilization of the ERK3 protein. In particular, phosphorylation of serine 189 in the activation motif of ERK3 is significantly increased in lung adenocarcinomas in comparison to adjacent normal controls in patients. Loss of ERK3 prevents the anchorage-independent growth of KRAS G12C-transformed human bronchial epithelial cells. We further find that loss of ERK3 reduces the oncogenic growth of KRAS G12C-driven NSCLC tumors in vivo and that the kinase activity of ERK3 is required for KRAS-driven oncogenesis in vitro. Our results demonstrate an obligatory role for ERK3 in NSCLC tumor progression and suggest that ERK3 kinase inhibitors can be pursued for treating KRAS G12C-driven tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ERK3 expression in NSCLC.
Fig. 2: KRAS overexpression leads to upregulation and stabilization of ERK3 protein.
Fig. 3: Role of ERK3 in anchorage-independent growth of SALEB and SAKRAS cells.
Fig. 4: ERK3-depleted G12C-driven NSCLC cells exhibit a decrease in anchorage-independent growth.
Fig. 5: Loss of ERK3 negatively affects oncogenic growth of KRAS G12C-driven NSCLC tumors in vivo.
Fig. 6: Schematic representation.

Similar content being viewed by others

Change history

  • 30 October 2020

    This Article was originally published under an Open Access licence [CC BY 4.0] in error. It should have been published under Nature Research’s License to Publish. The PDF and HTML versions of the Article have been corrected accordingly.

  • 09 November 2020

    A Correction to this paper has been published: https://doi.org/10.1038/s41417-020-00250-z

References

  1. Cheng TY, Cramb SM, Baade PD, Youlden DR, Nwogu C, Reid ME. The international epidemiology of lung cancer: latest trends, disparities, and tumor characteristics. J Thorac Oncol. 2016;11:1653–71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer. 2013;82:179–89.

    Article  PubMed  Google Scholar 

  3. Yuan M, Huang LL, Chen JH, Wu J, Xu Q. The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduct Target Ther. 2019;4:61.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu TC, Jin X, Wang Y, Wang K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am J Cancer Res. 2017;7:187–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Califano R, Abidin A, Tariq NU, Economopoulou P, Metro G, Mountzios G. Beyond EGFR and ALK inhibition: unravelling and exploiting novel genetic alterations in advanced non small-cell lung cancer. Cancer Treat Rev. 2015;41:401–11.

    Article  CAS  PubMed  Google Scholar 

  6. Yang S, Yu X, Fan Y, Shi X, Jin Y. Clinicopathologic characteristics and survival outcome in patients with advanced lung adenocarcinoma and KRAS mutation. J Cancer. 2018;9:2930–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  8. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30.

    Article  CAS  PubMed  Google Scholar 

  9. Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol. 2005;15:R563–574.

    Article  CAS  PubMed  Google Scholar 

  10. Pradhan R, Singhvi G, Dubey SK, Gupta G, Dua K. MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. Future Med Chem. 2019;11:793–5.

    Article  CAS  PubMed  Google Scholar 

  11. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007;26:3100–12.

    Article  CAS  PubMed  Google Scholar 

  12. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    Article  CAS  PubMed  Google Scholar 

  13. Hymowitz SG, Malek S. Targeting the MAPK pathway in RAS mutant cancers. Cold Spring Harb Perspect Med. 2018;8:a031492.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L. et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;11:1618.

    Article  PubMed Central  Google Scholar 

  15. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev: MMBR. 2011;75:50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klinger S, Turgeon B, Levesque K, Wood GA, Aagaard-Tillery KM, Meloche S. Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality. Proc Natl Acad Sci USA. 2009;106:16710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ronkina N, Schuster-Gossler K, Hansmann F, Kunze-Schumacher H, Sandrock I, Yakovleva T. et al. Germ line deletion reveals a nonessential role of atypical mitogen-activated protein kinase 6/extracellular signal-regulated kinase 3. Mol Cell Biol. 2019;39:1–11.

    Article  Google Scholar 

  18. Soulez M, Saba-El-Leil MK, Turgeon B, Mathien S, Coulombe P, Klinger S. et al. Reevaluation of the role of extracellular signal-regulated kinase 3 in perinatal survival and postnatal growth using new genetically engineered mouse models. Mol Cell Biol. 2019;39:1–10.

    Article  Google Scholar 

  19. Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S. N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol. 2004;24:6140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, et al. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhes Migr. 2015;9:483–94.

    Article  CAS  Google Scholar 

  21. Elkhadragy L, Alsaran H, Morel M, Long W. Activation loop phosphorylation of ERK3 is important for its kinase activity and ability to promote lung cancer cell invasiveness. J Biol Chem. 2018;293:16193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Investig. 2012;122:1869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M. et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife. 2020;9:e52511.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24:2371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et biophysica acta. 2007;1773:1161–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukazawa H, Mizuno S, Uehara Y. A microplate assay for quantitation of anchorage-independent growth of transformed cells. Anal Biochem. 1995;228:83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.

    CAS  PubMed  Google Scholar 

  29. Alley MC, Uhl CB, Lieber MM. Improved detection of drug cytotoxicity in the soft agar colony formation assay through use of a metabolizable tetrazolium salt. Life Sci. 1982;31:3071–8.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson SN, Towne DL, Burns DJ, Warrior U. A high-throughput soft agar assay for identification of anticancer compound. J Biomol Screen. 2007;12:938–45.

    Article  CAS  PubMed  Google Scholar 

  31. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172:578–89 e517.

    Article  CAS  PubMed  Google Scholar 

  32. Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, et al. Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model. BMC Cancer. 2010;10:188.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mooz J, Oberoi-Khanuja TK, Harms GS, Wang W, Jaiswal BS, Seshagiri S, et al. Dimerization of the kinase ARAF promotes MAPK pathway activation and cell migration. Sci Signal. 2014;7:ra73.

    Article  PubMed  Google Scholar 

  34. Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, et al. Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002;21:4577–86.

    Article  CAS  PubMed  Google Scholar 

  35. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ke N, Albers A, Claassen G, Yu DH, Chatterton JE, Hu X, et al. One-week 96-well soft agar growth assay for cancer target validation. Biotechniques. 2004;36:826–8.

    Article  CAS  PubMed  Google Scholar 

  38. McCarty KS Jr., Miller LS, Cox EB, Konrath J, McCarty KS Sr. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 1985;109:716–21.

    PubMed  Google Scholar 

  39. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13:1632–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen F, Zhang Y, Gibbons DL, Deneen B, Kwiatkowski DJ, Ittmann M, et al. Pan-cancer molecular classes transcending tumor lineage across 32 cancer types, multiple data platforms, and over 10,000 cases. Clin Cancer Res. 2018;24:2182–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stefanie Wenzel for excellent technical assistance. This work is supported from the grants from Else Kroener Fresenius Stiftung; MERCK (project ID-ERK-KR), CRC 1292, TP12, and Forschungszentrum für Immuntherapie of the University Medical Center Mainz to KR. We thank Dr. Daniela Hoeller for critical reading of the paper. We thank Dr. Bernd Gromol for his help with the H scoring and Dr. Jonathan Woodsmith for help with the analysis of Omics data, KR is supported through a Heisenberg professorship of the DFG (RA1739/4-1). We would like to thank the Translational oncology team of MERCK for their valuable inputs and advise. We thank Dr. Christiane Schoenfeld for analyses of the animal experiments.

Author information

Authors and Affiliations

Authors

Contributions

KB designed and performed most of the experiments as well as analyzed/interpreted the data prepared Figures and wrote the paper. FM performed Bioinformatic analyses. KD contributed to the staining and analyses of NSCLC tissue microarray. JS, HJ, and SR contributed to xenografts experiments. MS contributed to the bioinformatic analysis of RNA sequencing. KR contributed to the conception, design, analyzed/interpreted the data, and supervised the study. KB and KR wrote the paper with input from all authors.

Corresponding author

Correspondence to Krishnaraj Rajalingam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogucka, K., Marini, F., Rosigkeit, S. et al. ERK3/MAPK6 is required for KRAS-mediated NSCLC tumorigenesis. Cancer Gene Ther 28, 359–374 (2021). https://doi.org/10.1038/s41417-020-00245-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-00245-w

This article is cited by

Search

Quick links