Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation

Abstract

Mutations in the gene encoding for the histone acetyltransferase (HAT) CREBBP are common driver events in multiple types of human cancer, such as small cell lung cancer (SCLC) or Sonic Hedgehog medulloblastoma (SHH MB). Therefore, therapeutic options targeting such alterations are highly desired. We used human cell lines from SCLC as well as primary mouse tumor cells and genetically engineered mouse models for SHH MB to test treatment options with histone deacetylase inhibitors (HDACi) in CREBBP wild-type and mutated tumors. In contrast to CREBBP wild-type SCLC cells, CREBBP-mutated SCLC cells showed significantly lower IC50 values after treatment with HDACi. In addition, both in vitro and in vivo, HDACi had significant effects on cell proliferation of SHH-driven tumor MB cells harboring a CREBBP-mutation as compared to CREBBP wild-type controls. These data suggest that HDACi may serve as an additional therapeutic option for patients suffering from tumors driven by CREBBP mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488:100–5. https://doi.org/10.1038/nature11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547:311–7. https://doi.org/10.1038/nature22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25:393–405. https://doi.org/10.1016/j.ccr.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104–10. https://doi.org/10.1038/ng.2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–9. https://doi.org/10.1038/nature09727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189–95. https://doi.org/10.1038/nature09730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taylor MD, Mainprize TG, Rutka JT, Becker L, Bayani J, Drake JM. Medulloblastoma in a child with Rubenstein-Taybi Syndrome: case report and review of the literature. Pedia Neurosurg. 2001;35:235–8. https://doi.org/10.1159/000050428

    Article  CAS  Google Scholar 

  8. Miller RW, Rubinstein JH. Tumors in Rubinstein-Taybi syndrome. Am J Med Genet. 1995;56:112–5. https://doi.org/10.1002/ajmg.1320560125

    Article  CAS  PubMed  Google Scholar 

  9. Merk DJ, Ohli J, Merk ND, Thatikonda V, Morrissy S, Schoof M, et al. Opposing effects of CREBBP mutations govern the phenotype of Rubinstein-Taybi syndrome and adult SHH medulloblastoma. Dev Cell. 2018;44:709–.e706. https://doi.org/10.1016/j.devcel.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  10. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 2006;66:10171–8. https://doi.org/10.1158/0008-5472.Can-06-0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24. https://doi.org/10.1016/j.neuron.2005.08.028

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Hofmann C, Casanova E, Schutz G, Lutz B. Generation of a conditional allele of the CBP gene in mouse. Genesis. 2004;40:82–89. https://doi.org/10.1002/gene.20068

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990;265:17174–9.

    CAS  PubMed  Google Scholar 

  14. Pei Y, Liu KW, Wang J, Garancher A, Tao R, Esparza LA, et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell. 2016;29:311–23. https://doi.org/10.1016/j.ccell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14:123–34. https://doi.org/10.1016/j.ccr.2008.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology. 2014;76(Pt C):709–18. https://doi.org/10.1016/j.neuropharm.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Koppel I, Timmusk T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology. 2013;75:106–15. https://doi.org/10.1016/j.neuropharm.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol. 2008;11:1123–34. https://doi.org/10.1017/s1461145708009024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia D, Augert A, Kim DW, Eastwood E, Wu N, Ibrahim AH, et al. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov. 2018;8:1422–37. https://doi.org/10.1158/2159-8290.Cd-18-0385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Michael Schmidt, Silvia Occhionero, Marie-Christin Burmester. and Veronika Kaltenbrunn for excellent technical support.

Funding

This work was supported by grants from the German Cancer Aid, the Wilhelm-Sander Stiftung, and the Fördergemeinschaft Kinderkrebs-Zentrum Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schüller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellwig, M., Merk, D.J., Lutz, B. et al. Preferential sensitivity to HDAC inhibitors in tumors with CREBBP mutation. Cancer Gene Ther 27, 294–300 (2020). https://doi.org/10.1038/s41417-019-0099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0099-5

This article is cited by

Search

Quick links