Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia

Subjects

Abstract

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and is associated with poor long-term survival often owing to relapse. Current treatments for AML are associated with considerable toxicity and are frequently not effective after relapse. Thus, it is important to develop novel therapeutic strategies. Short interfering RNA (siRNA)-based therapeutics targeting key oncogenes have been proposed as treatments for AML. We recently developed novel siRNA delivery polycations (PCX) based on AMD3100 (plerixafor), an FDA-approved inhibitor of the CXC chemokine receptor 4 (CXCR4). Inhibitors of CXCR4 have been shown to sensitize leukemia cells to chemotherapy. Therefore, PCX has the potential to target leukemia cells via two mechanisms: inhibition of CXCR4 and delivery of siRNAs against critical genes. In this report, we show that PCX exerts a cytotoxic effect on leukemia cells more effectively than other CXCR4 inhibitors, including AMD3100. In addition, we show that PCX can deliver siRNAs against the transcription factor RUNX1 to mouse and human leukemia cells. Overall, our study provides the first evidence that dual-function PCX/siRNA nanoparticles can simultaneously inhibit CXCR4 and deliver siRNAs, targeting key oncogenes in leukemia cells and that PCX/siRNA has clinical potential for the treatment of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Briot T, Roger E, Thepot S, Lagarce F. Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today. 2018;23:1936–49.

    Article  CAS  PubMed  Google Scholar 

  2. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saultz JN, Garzon R. Acute myeloid leukemia: a concise review. J Clin Med. 2016;5:E33.

    Article  PubMed  CAS  Google Scholar 

  5. De Kouchkovsky I, Abdul-Hay M. ‘Acute myeloid leukemia: a comprehensive review and 2016 update’. Blood Cancer J. 2016;6:e441.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andresen V, Gjertsen BT. Drug repurposing for the treatment of acute myeloid leukemia. Front Med (Lausanne). 2017;4:211.

    Article  Google Scholar 

  7. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  9. Cunningham L, Finckbeiner S, Hyde RK, Southall N, Marugan J, Yedavalli VR, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc Natl Acad Sci USA. 2012;109:14592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Illendula A, Pulikkan JA, Zong H, Grembecka J, Xue L, Sen S, et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice. Science. 2015;347:779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, et al. Small molecule inhibitor of CBFbeta-RUNX binding for RUNX transcription factor driven cancers. EBioMedicine. 2016;8:117–31.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seton-Rogers S. Therapeutics: siRNAs jump the hurdle. Nat Rev Cancer. 2012;12:376–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21:5716–24.

    Article  CAS  PubMed  Google Scholar 

  14. Kaur K, Rath G, Chandra S, Singh R, Goyal AK. Chemotherapy with si-RNA and anti-cancer drugs. Curr Drug Deliv. 2018;15:300–11.

    Article  CAS  PubMed  Google Scholar 

  15. Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13:819–29.

    Article  CAS  PubMed  Google Scholar 

  16. Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014;538:217–27.

    Article  CAS  PubMed  Google Scholar 

  17. Xin Y, Huang M, Guo WW, Huang Q, Zhang LZ, Jiang G. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017;16:134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li J, Zhu Y, Hazeldine ST, Li C, Oupicky D. Dual-function CXCR4 antagonist polyplexes to deliver gene therapy and inhibit cancer cell invasion. Angew Chem Int Ed Engl. 2012;51:8740–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Li J, Chen Y, Oupicky D. Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes. Biomater Sci. 2015;3:1114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Y, Wang Y, Li J, Hang Y, Oupicky D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;11:e1528.

    PubMed  PubMed Central  Google Scholar 

  21. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113:6206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper TM, Sison EAR, Baker SD, Li L, Ahmed A, Trippett T, et al. A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: a pediatric oncology experimental therapeutics investigators’ Consortium study (POE 10-03). Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.26414.

    Article  CAS  Google Scholar 

  24. Martinez-Cuadron D, Boluda B, Martinez P, Bergua J, Rodriguez-Veiga R, Esteve J, et al. A phase I-II study of plerixafor in combination with fludarabine, idarubicin, cytarabine, and G-CSF (PLERIFLAG regimen) for the treatment of patients with the first early-relapsed or refractory acute myeloid leukemia. Ann Hematol. 2018;97:763–72.

    Article  CAS  PubMed  Google Scholar 

  25. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP, et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell. 2006;9:57–68.

    Article  CAS  PubMed  Google Scholar 

  26. Hyde RK, Zhao L, Alemu L, Liu PP. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia. 2015;29:1771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Richter L, Becker M, Amador C, Hyde RK. IL1RL1 is dynamically expressed on Cbfb-MYH11(+) leukemia stem cells and promotes cell survival. Sci Rep. 2019;9:1729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hyde RK, Kamikubo Y, Anderson S, Kirby M, Alemu L, Zhao L, et al. Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood. 2010;115:1433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie Y, Wang Y, Li J, Hang Y, Jaramillo L, Wehrkamp CJ, et al. Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Theranostics. 2018;8:4305–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ. Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia. 2003;17:1294–300.

    Article  CAS  PubMed  Google Scholar 

  31. Beider K, Begin M, Abraham M, Wald H, Weiss ID, Wald O, et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol. 2011;39:282–92.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Patel S, Abdelouahab H, Wittner M, Willekens C, Shen S, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis. 2012;3:e396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galsky MD, Vogelzang NJ, Conkling P, Raddad E, Polzer J, Roberson S, et al. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res. 2014;20:3581–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cho BS, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood. 2015;126:222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng SB, Zhang X, Paul D, Kays LM, Gough W, Stewart J, et al. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol Cancer Ther. 2015;14:480–90.

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N, et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 2013;4:1131–43.

    Article  CAS  PubMed  Google Scholar 

  37. Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J, et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep. 2013;3:116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, et al. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest. 2017;127:2815–28.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gu R, Yang X, Wei H. Molecular landscape and targeted therapy of acute myeloid leukemia. Biomark Res. 2018;6:32.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Luppi M, Fabbiano F, Visani G, Martinelli G, Venditti A. Novel agents for acute myeloid leukemia. Cancers (Basel). 2018;10:E429.

    Article  CAS  Google Scholar 

  41. Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther. 2003;10:125–33.

    Article  CAS  PubMed  Google Scholar 

  42. Landry B, Aliabadi HM, Samuel A, Gul-Uludag H, Jiang X, Kutsch O, et al. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines. PLoS ONE. 2012;7:e44197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gul-Uludag H, Valencia-Serna J, Kucharski C, Marquez-Curtis LA, Jiang X, Larratt L, et al. Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+acute myeloid leukemia cells. Leuk Res. 2014;38:1299–308.

    Article  CAS  PubMed  Google Scholar 

  44. Uludag H, Landry B, Valencia-Serna J, Remant-Bahadur KC, Meneksedag-Erol D. Current attempts to implement siRNA-based RNAi in leukemia models. Drug Discov Today. 2016;21:1412–20.

    Article  CAS  PubMed  Google Scholar 

  45. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113:4341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abraham M, Klein S, Bulvik B, Wald H, Weiss ID, Olam D, et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 2017;31:2336–46.

    Article  CAS  PubMed  Google Scholar 

  47. Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19:357–66.

    Article  CAS  PubMed  Google Scholar 

  48. Liu SH, Gu Y, Pascual B, Yan Z, Hallin M, Zhang C, et al. A novel CXCR4 antagonist IgG1 antibody (PF-06747143) for the treatment of hematologic malignancies. Blood Adv. 2017;1:1088–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hyde RK, Liu P, Friedman AD. RUNX1 and CBFbeta mutations and activities of their wild-type alleles in AML. Adv Exp Med Biol. 2017;962:265–82.

    Article  CAS  PubMed  Google Scholar 

  50. Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest. 2013;123:3876–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morita K, Maeda S, Suzuki K, Kiyose H, Taniguchi J, Liu PP, et al. Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv. 2017;1:1440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Wu N, Liu D, Jin Y. Recurrent fusion genes in leukemia: an attractive target for diagnosis and treatment. Curr Genom. 2017;18:378–84.

    Article  CAS  Google Scholar 

  53. Wang Y, Kumar S, Rachagani S, Sajja BR, Xie Y, Hang Y, et al. Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials. 2016;101:108–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuo YH, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH. Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood. 2009;113:3323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank UNMC Flow Cytometry Research and the UNMC Center for Comparative Medicine. This work was supported by the state of Nebraska through LB606 and the Nebraska Pediatric Cancer Research Group.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., Y.X., D.O., and R.K.H. conceived of and designed the study; Y.W., Y.X., J.W., Y.H., L.R., and M.B. performed experiments; C.A. performed histological evaluations. Y.W., Y.X., D.O., and R.K.H. wrote the manuscript.

Corresponding author

Correspondence to R. Katherine Hyde.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, Y., Williams, J. et al. Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia. Cancer Gene Ther 27, 45–55 (2020). https://doi.org/10.1038/s41417-019-0095-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0095-9

This article is cited by

Search

Quick links