Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNA21 and the various types of myeloid leukemia

Abstract

Myeloid leukemia (ML) is heterogeneous cancer classified by abnormal growth of myeloid cells due to genetic aberrations and mutations. It is generally categorized by clonal disorders of hematopoietic stem cells and differentiation. The molecular mechanism behind the myeloid malignancies is not yet known, but recent sequencing analysis reveals all the mutated factors. As we know that there is currently no compromise on therapy for such types of malignancies and at the present painful process like chemotherapy and radiation therapy are not effective for the treatment of ML, so there is an urgent need to develop a non-invasive biomarker for different types of ML. MicroRNAs (MiRNAs) is a small non-coding RNAs that have been involved in a wide range of biological function and it is the main cause of the manifestation of many diseases. Among the reported MiRNAs, MIR-21 is considered to be an important MiRNA, which is frequently elevated in many types of types of cancer, suggesting that it plays an important role in cancer progressions. So far, there is no paper that signifies the role of miR-21 in all types of ML and the number of studies on the different category of ML is sparse. Therefore, the main thrust of this paper is to provide an overview of the current clinical evidence and significance of miR-21 in ML. It was found that MiR-21 was found to be normally upregulated in all types of ML, however, we summarize the important research findings surrounding the role of miR-21 in different types of ML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Gordon JE, Wong JJ, Rasko JE. MicroRNAs in myeloid malignancies. Br J Haematol. 2013;162:162–76.

    Article  PubMed  CAS  Google Scholar 

  2. Potts KS, Bowman TV. Modeling myeloid malignancies using zebrafish. Front Oncol. 2017;7:297.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  PubMed  CAS  Google Scholar 

  4. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2013;28:241–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Krishnan R, Mani P, Sivakumar P, Gopinath V, Sekar D. Expression and methylation of circulating microRNA-510 in essential hypertension. Hypertens Res. 2017;40:361–3.

    Article  PubMed  CAS  Google Scholar 

  8. Sekar D, Venugopal B, Sekar P, Ramalingam K. Role of microRNA 21 in diabetes and associated/related diseases. Gene. 2016;582:14–8.

    Article  PubMed  CAS  Google Scholar 

  9. Sekar D, Shilpa BR, Das AJ. Relevance of microRNA 21 in different types of hypertension. Curr Hypertens Rep. 2017;19:57.

    Article  PubMed  CAS  Google Scholar 

  10. Asangani IA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation, and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  PubMed  CAS  Google Scholar 

  11. Sicard F, et al. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther. 2013;21:986–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Toiyama Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90.

    Article  PubMed  CAS  Google Scholar 

  14. HatleyME, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010;18:282–93.

    Article  CAS  Google Scholar 

  15. Ma X, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci USA. 2011;108:10144–9.

    Article  PubMed  Google Scholar 

  16. Gu J, Zhu X, Li Y, Dong D, Yao J, Lin C, Huang K, Hu H, Fei J. miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol. 2011;28:211–8.

    Article  PubMed  CAS  Google Scholar 

  17. Choi Y, Hur EH, Moon JH, Goo BK, Choi DR, Lee JH. Expression and prognostic significance of microRNAs in Korean patients with myelodysplastic syndrome. Korean J Intern Med. 2017. https://doi.org/10.3904/kjim.2016.239.

  18. Choi JS, Nam MH, Yoon SY, Kang SH. MicroRNA-194-5p could serve as a diagnostic and prognostic biomarker in myelodysplastic syndromes. Leuk Res. 2015;39:763–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kim Y, Cheong JW, Kim YK, et al. Serum microRNA-21 as a potential biomarker for response to hypomethylating agents in myelodysplastic syndromes. PLoS ONE. 2014;9:e86933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Vasilatou D, Papageorgiou SG, Kontsioti F, et al. Expression analysis of mir-17-5p, mir-20a and let-7a microRNAs and their target proteins in CD34+ bone marrow cells of patients with myelodysplastic syndromes. Leuk Res. 2013;37:251–8.

    Article  PubMed  CAS  Google Scholar 

  21. Macedo LC, Silvestre AP, Rodrigues C, de Alencar JB, Zacarias JM, Ambrosio-Albuquerque EP, et al. Genetics factors associated with myelodysplastic syndromes. Blood Cells Mol Dis. 2015;55:76–81.

    Article  PubMed  CAS  Google Scholar 

  22. Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, et al. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50:1854–9.

    Article  PubMed  CAS  Google Scholar 

  23. Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. miR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood. 2013;121:2875–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Borze I, Scheinin I, Siitonen S, Elonen E, Juvonen E, Knuutila S. miRNA expression profiles in myelodysplastic syndromes reveal Epstein-Barr virus miR-BART13 dysregulation. Leuk Lymphoma. 2011;52:1567–73.

    Article  PubMed  CAS  Google Scholar 

  25. Alizadeh S, Azizi SG, Soleimani M, Farshi Y, Kashani Khatib Z. The role of microRNAs in myeloproliferative neoplasia. Int J Hematol Oncol Stem Cell Res. 2016;10:172–85.

    PubMed  PubMed Central  Google Scholar 

  26. Espadinha AS, Prouzet-Mauléon V, Claverol S, Lagarde V, Bonneu M, Mahon FX, Cardinaud B. A tyrosine kinase-STAT5-miR21-PDCD4 regulatory axis in chronic and acute myeloid leukemia cells. Oncotarget. 2017;8:76174–88.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prinsloo A, Pool R, Van Niekerk C. Preliminary data on microRNA expression profiles in a group of South African patients diagnosed with chronic myeloid leukemia. Mol Clin Oncol. 2017;7:386–90.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou X, Yuan P, Liu Q, Liu Z. LncRNA MEG3 regulates imatinib resistance in chronic myeloid leukemia via suppressing microRNA-21. Biomol Ther. 2017;25:490–6.

    Article  Google Scholar 

  29. Burin SM, Berzoti-Coelho MG, Cominal JG, Ambrosio L, Torqueti MR, Sampaio SV, de Castro FA. The L-amino acid oxidase from Calloselasma rhodostoma snake venom modulates apoptomiRs expression in Bcr-Abl-positive cell lines. Toxicon. 2016;120:9–14.

    Article  PubMed  CAS  Google Scholar 

  30. Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L, De Caro V, Cardinale VG, et al. modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget. 2016;7:30420–39.

    PubMed  PubMed Central  Google Scholar 

  31. Jurkovicova D, Lukackova R, Magyerkova M, Kulcsar L, Krivjanska M, Krivjansky V, et al. microRNA expression profiling as supportive diagnostic and therapy prediction tool in chronic myeloid leukemia. Neoplasma. 2015;62:949–58.

    Article  PubMed  CAS  Google Scholar 

  32. Wang WZ, Pu QH, Lin XH, Liu MY, Wu LR, Wu QQ, et al. Silencing of miR-21 sensitizes CML CD34+ stem/progenitor cells to imatinib-induced apoptosis by blocking PI3K/AKT pathway. Leuk Res. 2015;39:1117–24.

    Article  PubMed  CAS  Google Scholar 

  33. Li Y, Zhu X, Gu J, Dong D, Yao J, Lin C, et al. Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci. 2010;101:948–54.

    Article  PubMed  CAS  Google Scholar 

  34. Hu H, Li Y, Gu J, Zhu X, Dong D, Yao J, Lin C, Fei J. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk Lymphoma. 2010;51:694–701.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou M, Zeng J, Wang X, Wang X, Huang T, Fu Y, et al. Demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget. 2015;6:1249–61.

    PubMed  Google Scholar 

  36. Wang X, Wang Y. Ginsenoside Rh2 mitigates pediatric leukemia through suppression of Bcl-2 in leukemia cells. Cell Physiol Biochem. 2015;37:641–50.

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Li F, Ma Z, Yu M, Guo Q, Huang J, Yu W, Wang Y, Jin J. High expression of TET1 predicts poor survival in cytogenetically normal acute myeloid leukemia from two cohorts. EBioMedicine. 2018;28:90–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Riccioni R, Lulli V, Castelli G, Biffoni M, Tiberio R, Pelosi E, et al. miR-21 is overexpressed in NPM1-mutant acute myeloid leukemias. Leuk Res. 2015;39:221–8.

    Article  PubMed  CAS  Google Scholar 

  39. Díaz-Beyá M, Navarro A, Ferrer G, Díaz T, Gel B, et al. Acute myeloid leukemia with translocation (8;16)(p11; p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia. 2013;27:595–603.

    Article  PubMed  CAS  Google Scholar 

  40. Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D, Scott RJ. MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS ONE. 2012;7:e44546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Trang P, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2009;29:1580–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durairaj Sekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagal, M., S. R., S.K., P., S. et al. MicroRNA21 and the various types of myeloid leukemia. Cancer Gene Ther 25, 161–166 (2018). https://doi.org/10.1038/s41417-018-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0025-2

This article is cited by

Search

Quick links