Genomic landscape and prognostic analysis of mantle cell lymphoma

Abstract

To gain insight into the molecular pathogenesis of patients with mantle cell lymphoma (MCL), next-generation whole-exome sequencing of 16 MCL patients was performed. We identified recurrent mutations in genes that are well known to be functionally relevant in MCL, including ATM (37.5%), TP53 (31.3%), WHSC1 (31.3%), CCND1 (18.8%), NOTCH2 (6.3%), and CDKN2A (6.3%). We also identified somatic mutations in genes for which a functional role in MCL has not been previously suspected. These genes included CCDC15, APC, CDH1, S1PR1, ATRX, BRCA2, CASP8, and NOTCH3. Further, we investigated the prognostic factors associated with MCL from clinical, pathological, and genetic mutations. Mutations of TP53 (P = 0.021) was a significant prognostic factor with shorter overall survival (OS). Although there was no statistical difference, the median survival time of patients with WHSC1 mutations was shorter than those without mutations (P = 0.070). Mutations in ATM and CCND1 had no prognostic value (P = 0.552, 0.566). When adjusted for MCL International Prognostic Index (MIPI) or combined MCL-International Prognostic Index (MIPI-c), TP53 and WHSC1 mutations were the most important prognostic factors in MCL (P < 0.05). Our data provide an unbiased view of the landscape of mutations in MCL and commend that all patients benefit from mutations of TP53 and WHSC1 at diagnosis, in addition to MIPI and MIPI-c score.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ghielmini M, Zucca E. How I treat mantle cell lymphoma. Blood. 2009;114:1469–76.

    CAS  Article  Google Scholar 

  2. 2.

    Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–62.

    CAS  Article  Google Scholar 

  3. 3.

    Leux C, Maynadie M, Troussard X, Cabrera Q, Herry A, Le Guyader-Peyrou S, et al. Mantle cell lymphoma epidemiology: a population-based study in France. Ann Hematol. 2014;93:1327–33.

    Article  Google Scholar 

  4. 4.

    Zhou Y, Wang H, Fang W, Romaguer JE, Zhang Y, Delasalle KB, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113:791–8.

    Article  Google Scholar 

  5. 5.

    Cheah CY, Seymour JF, Wang ML. Mantle cell lymphoma. J Clin Oncol. 2016;34:1256–69.

    CAS  Article  Google Scholar 

  6. 6.

    Vose JM. Mantle cell lymphoma: 2012 update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2012;87:604–9.

    Article  Google Scholar 

  7. 7.

    Jares P, Colomer D, Campo E. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012;122:3416–23.

    CAS  Article  Google Scholar 

  8. 8.

    Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142:149–65.

    CAS  Article  Google Scholar 

  9. 9.

    Inamdar AA, Goy A, Ayoub NM, Attia C, Oton L, Taruvai V, et al. Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents. Oncotarget. 2016;7:48692–731.

    Article  Google Scholar 

  10. 10.

    Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109:3879–84.

    CAS  Article  Google Scholar 

  11. 11.

    Miranda NF, Georgiou K, Chen L, Wu C, Gao Z, Zaravinos A, et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood. 2014;124:2544–53.

    Article  Google Scholar 

  12. 12.

    Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:244.

    Google Scholar 

  13. 13.

    Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111:558–65.

    CAS  Article  Google Scholar 

  14. 14.

    Hoster E, Rosenwald A, Berger F, Bernd HW, Hartmann S, Loddenkemper C, et al. Prognostic value of Ki-67 index, cytology, and growth pattern in mantle-cell lymphoma: results from randomized trials of the European Mantle Cell Lymphoma Network. J Clin Oncol. 2016;34:1386–94.

    CAS  Article  Google Scholar 

  15. 15.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  Article  Google Scholar 

  16. 16.

    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma. 2013;43:11. 10 11-33

    Google Scholar 

  17. 17.

    Li H, Durbin R. Fast and accurate long-read alignment with Burrows−Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  Google Scholar 

  18. 18.

    Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.

    CAS  Article  Google Scholar 

  19. 19.

    Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinforma. 2017;18:142.

    Article  Google Scholar 

  20. 20.

    Ahmed M, Zhang L, Nomie K, Lam L, Wang M. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget. 2016;7:58638–48.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  Google Scholar 

  22. 22.

    Oyer JA, Huang X, Zheng Y, Shim J, Ezponda T, Carpenter Z, et al. Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia. 2014;28:198–201.

    CAS  Article  Google Scholar 

  23. 23.

    Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci USA. 2013;110:18250–5.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang J, Jima D, Moffitt AB, Liu Q, Czader M, Hsi ED, et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014;123:2988–96.

    CAS  Article  Google Scholar 

  25. 25.

    Tamaki H, Sanda M, Katsumata O, Hara Y, Fukaya M, Sakagami H. Pilt is a coiled-coil domain-containing protein that localizes at the trans-Golgi complex and regulates its structure. FEBS Lett. 2012;586:3064–70.

    CAS  Article  Google Scholar 

  26. 26.

    Morra F, Luise C, Visconti R, Staibano S, Merolla F, Ilardi G, et al. New therapeutic perspectives in CCDC6 deficient lung cancer cells. Int J Cancer. 2015;136:2146–57.

    CAS  Article  Google Scholar 

  27. 27.

    Chen M, Ni J, Chang HC, Lin CY, Muyan M, Yeh S. CCDC62/ERAP75 functions as a coactivator to enhance estrogen receptor beta-mediated transactivation and target gene expression in prostate cancer cells. Carcinogenesis. 2009;30:841–50.

    CAS  Article  Google Scholar 

  28. 28.

    Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem. 2002;277:25851–4.

    CAS  Article  Google Scholar 

  29. 29.

    Selvam SP, Ogretmen B. Sphingosine kinase/sphingosine 1-phosphate signaling in cancer therapeutics and drug resistance. Handb Exp Pharmacol. 2013;216:3–27.

    CAS  Article  Google Scholar 

  30. 30.

    Bouska A, Zhang W, Gong Q, Iqbal J, Scuto A, Vose J, et al. Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia. 2017;31:83–91.

    CAS  Article  Google Scholar 

  31. 31.

    Wu C, de Miranda NF, Chen L, Wasik AM, Mansouri L, Jurczak W, et al. Genetic heterogeneity in primary and relapsed mantle cell lymphomas: impact of recurrent CARD11 mutations. Oncotarget. 2016;7:38180–90.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Paul Y, Mondal B, Patil V, Somasundaram K. DNA methylation signatures for 2016 WHO classification subtypes of diffuse gliomas. Clin Epigenetics. 2017;9:32.

    Article  Google Scholar 

  33. 33.

    Herbaux C, Duployez N, Badens C, Poret N, Gardin C, Decamp M, et al. Incidence of ATRX mutations in myelodysplastic syndromes, the value of microcytosis. Am J Hematol. 2015;90:737–8.

    CAS  Article  Google Scholar 

  34. 34.

    Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.

    CAS  Article  Google Scholar 

  35. 35.

    Molina-Montes E, Perez-Nevot B, Pollan M, Sanchez-Cantalejo E, Espin J, Sanchez MJ. Cumulative risk of second primary contralateral breast cancer in BRCA1/BRCA2 mutation carriers with a first breast cancer: a systematic review and meta-analysis. Breast. 2014;23:721–42.

    Article  Google Scholar 

  36. 36.

    Friedenson B. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer. 2007;7:152.

    Article  Google Scholar 

  37. 37.

    Halldorsdottir AM, Lundin A, Murray F, Mansouri L, Knuutila S, Sundstrom C, et al. Impact of TP53 mutation and 17p deletion in mantle cell lymphoma. Leukemia. 2011;25:1904–8.

    CAS  Article  Google Scholar 

  38. 38.

    Dong HJ, Zhou LT, Fang C, Fan L, Zhu DX, Wang YH, et al. TP53 mutation is not an independent prognostic factor in patients with mantle cell lymphoma at advanced stage. Med Oncol. 2012;29:2166–73.

    CAS  Article  Google Scholar 

  39. 39.

    Nordstrom L, Sernbo S, Eden P, Gronbaek K, Kolstad A, Raty R, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma—a Nordic Lymphoma Group study. Br J Haematol. 2014;166:98–108.

    Article  Google Scholar 

  40. 40.

    Delfau-Larue MH, Klapper W, Berger F, Jardin F, Briere J, Salles G, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015;126:604–11.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families who contributed to this study. The authors would also like to acknowledge Professor Cuiling Liu in Department of Pathology, Peking University Third Hospital.

Funding

This work was funded by China Health Promotion Foundation, CHPF-zlkysx-001. Employees of the funding source were involved in the collection and assembly of data, genetic sequencing, performing statistical analysis, analyzing and interpreting data, and drafting, reviewing, and approving the manuscript, as reflected in the author contributions statement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongmei Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Zhang, W., Wang, J. et al. Genomic landscape and prognostic analysis of mantle cell lymphoma. Cancer Gene Ther 25, 129–140 (2018). https://doi.org/10.1038/s41417-018-0022-5

Download citation

Further reading

Search