Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular characterization stratifies VQ myeloma cells into two clusters with distinct risk signatures and drug responses

Abstract

Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone marrow and extramedullary sites. We previously characterized a VQ model for human high-risk MM. The various VQ lines display different disease phenotypes and survival rates, suggesting significant intra-model variation. Here, we use whole-exome sequencing and copy number variation (CNV) analysis coupled with RNA-Seq to stratify the VQ lines into corresponding clusters: Group A cells had monosomy chromosome (chr) 5 and overexpressed genes and pathways associated with sensitivity to bortezomib (Btz) treatment in human MM patients. By contrast, Group B VQ cells carried recurrent amplification (Amp) of chr3 and displayed high-risk MM features, including downregulation of Fam46c, upregulation of cancer growth pathways associated with functional high-risk MM, and expression of Amp1q and high-risk UAMS-70 and EMC-92 gene signatures. Consistently, in sharp contrast to Group A VQ cells that showed short-term response to Btz, Group B VQ cells were de novo resistant to Btz in vivo. Our study highlights Group B VQ lines as highly representative of the human MM subset with ultrahigh risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B-cell receptor repertoire analysis shows dominant clonality and low somatic hypermutation (SHM) rates in primary VQ cells and VQ cell lines.
Fig. 2: Whole-exome sequencing identifies recurrently mutated genes in VQ myeloma cells.
Fig. 3: Copy number variation (CNV) analysis stratifies VQ cells based on recurrent amplification of chromosome 3 and monosomy chromosome 5.
Fig. 4: RNA-Seq analysis reveals two distinct transcriptional clusters of VQ myeloma.
Fig. 5: VQ Group B myeloma cells have increased expression of cancer growth pathways and Amp1q-associated PBX1-FOXM1 gene signatures.
Fig. 6: High-risk multiple myeloma gene signatures are enriched in VQ Group B compared to VQ Group A and t-Vk12653 Vĸ*Myc cells.
Fig. 7: Group A and Group B VQ cells display distinct responses to bortezomib in vivo.

Similar content being viewed by others

Data availability

The next-generation sequencing datasets generated and analyzed during the current study are available in the Sequence Read Archive (SRA) at https://www.ncbi.nlm.nih.gov/sra, with BioProject accession number PRJNA947112, and Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo, with accession number GSE226833. The code and scripts for data analysis are deposited onto Github: https://github.com/BRIwanglab/Oncogene2023.

References

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  PubMed  Google Scholar 

  2. Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A, et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood. 2011;117:553–62.

    Article  CAS  PubMed  Google Scholar 

  3. Caro J, Al Hadidi S, Usmani S, Yee AJ, Raje N, Davies FE. How to treat high-risk myeloma at diagnosis and relapse. Am Soc Clin Oncol Educ Book. 2021;41:291–309.

    Article  PubMed  Google Scholar 

  4. Solimando AG, Da Via MC, Cicco S, Leone P, Di Lernia G, Giannico D, et al. High-risk multiple myeloma: integrated clinical and omics approach dissects the neoplastic clone and the tumor microenvironment. J Clin Med. 2019;8:997.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mikhael JR, Dingli D, Roy V, Reeder CB, Buadi FK, Hayman SR, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc. 2013;88:360–76.

    Article  PubMed  Google Scholar 

  6. D’Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, et al. Second Revision of the International Staging System (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J Clin Oncol. 2022;40:3406–18.

    Article  PubMed  Google Scholar 

  7. Avet-Loiseau H, Attal M, Campion L, Caillot D, Hulin C, Marit G, et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol. 2012;30:1949–52.

    Article  PubMed  Google Scholar 

  8. Trasanidis N, Katsarou A, Ponnusamy K, Shen YA, Kostopoulos IV, Bergonia B, et al. Systems medicine dissection of chr1q-amp reveals a novel PBX1-FOXM1 axis for targeted therapy in multiple myeloma. Blood. 2022;139:1939–53.

    Article  CAS  PubMed  Google Scholar 

  9. Locher M, Steurer M, Jukic E, Keller MA, Fresser F, Ruepp C, et al. The prognostic value of additional copies of 1q21 in multiple myeloma depends on the primary genetic event. Am J Hematol. 2020;95:1562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shaughnessy JD Jr., Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–84.

    Article  CAS  PubMed  Google Scholar 

  11. Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B, et al. A gene expression signature for high-risk multiple myeloma. Leukemia. 2012;26:2406–13.

    Article  CAS  PubMed  Google Scholar 

  12. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33:159–70.

    Article  CAS  PubMed  Google Scholar 

  13. Costa LJ, Chhabra S, Medvedova E, Dholaria BR, Schmidt TM, Godby KN, et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J Clin Oncol. 2022;40:2901–12.

    Article  CAS  PubMed  Google Scholar 

  14. Soekojo CY, Chung TH, Furqan MS, Chng WJ. Genomic characterization of functional high-risk multiple myeloma patients. Blood Cancer J. 2022;12:24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rossi M, Botta C, Arbitrio M, Grembiale RD, Tagliaferri P, Tassone P. Mouse models of multiple myeloma: technologic platforms and perspectives. Oncotarget. 2018;9:20119–33.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cooke RE, Koldej R, Ritchie D. Immunotherapeutics in multiple myeloma: how can translational mouse models help? J Oncol. 2019;2019:2186494.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morito N, Yoh K, Maeda A, Nakano T, Fujita A, Kusakabe M, et al. A novel transgenic mouse model of the human multiple myeloma chromosomal translocation t(14;16)(q32;q23). Cancer Res. 2011;71:339–48.

    Article  CAS  PubMed  Google Scholar 

  18. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13:167–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radl J, De Glopper ED, Schuit HR, Zurcher C. Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol. 1979;122:609–13.

    Article  CAS  PubMed  Google Scholar 

  20. Garrett IR, Dallas S, Radl J, Mundy GR. A murine model of human myeloma bone disease. Bone. 1997;20:515–20.

    Article  CAS  PubMed  Google Scholar 

  21. Maes K, Boeckx B, Vlummens P, De Veirman K, Menu E, Vanderkerken K, et al. The genetic landscape of 5T models for multiple myeloma. Sci Rep. 2018;8:15030.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chesi M, Stein CK, Garbitt VM, Sharik ME, Asmann YW, Asmann YW, et al. Monosomic loss of MIR15A/MIR16-1 is a driver of multiple myeloma proliferation and disease progression. Blood Cancer Discov. 2020;1:68–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Avet-Loiseau H, Li JY, Morineau N, Facon T, Brigaudeau C, Harousseau JL, et al. Monosomy 13 is associated with the transition of monoclonal gammopathy of undetermined significance to multiple myeloma. Intergroupe Francophone du Myelome. Blood. 1999;94:2583–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wen Z, Rajagopalan A, Flietner E, Yun G, Chesi M, Furumo Q, et al. Expression of NrasQ61R and MYC transgene in germinal center B cells induces a highly malignant multiple myeloma in mice. Blood. 2021;137:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flietner E, Wen Z, Rajagopalan A, Jung O, Watkins L, Wiesner J, et al. Ponatinib sensitizes myeloma cells to MEK inhibition in the high-risk VQ model. Sci Rep. 2022;12:10616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez D, van der Burg M, Garcia-Sanz R, Fenton JA, Langerak AW, Gonzalez M, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112–21.

    Article  CAS  PubMed  Google Scholar 

  27. Maul RW, Gearhart PJ. AID and somatic hypermutation. Adv Immunol. 2010;105:159–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES, et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc. 2016;11:1599–616.

    Article  CAS  PubMed  Google Scholar 

  29. Medina A, Jimenez C, Sarasquete ME, Gonzalez M, Chillon MC, Balanzategui A, et al. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J. 2020;10:14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ferrero S, Capello D, Svaldi M, Boi M, Gatti D, Drandi D, et al. Multiple myeloma shows no intra-disease clustering of immunoglobulin heavy chain genes. Haematologica. 2012;97:849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fraschilla I, Jeffrey KL. The speckled protein (SP) family: immunity’s chromatin readers. Trends Immunol. 2020;41:572–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karaky M, Fedetz M, Potenciano V, Andres-Leon E, Codina AE, Barrionuevo C, et al. SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF-kappaB inhibition. Hum Mol Genet. 2018;27:4012–23.

    CAS  PubMed  Google Scholar 

  33. Ji DX, Witt KC, Kotov DI, Margolis SR, Louie A, Chevee V, et al. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife. 2021;10:e67290.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hu Y, Chen W, Wang J. Mutations in thirty hotspot genes in newly diagnosed chinese multiple myeloma patients. Onco Targets Ther. 2019;12:9999–10010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  Google Scholar 

  37. Kortum KM, Mai EK, Hanafiah NH, Shi CX, Zhu YX, Bruins L, et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood. 2016;128:1226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qi C, Zhu YT, Hu L, Zhu YJ. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer. 2009;124:793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei R, Xiao Y, Song Y, Yuan H, Luo J, Xu W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J Exp Clin Cancer Res. 2019;38:112.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics. 2016;32:309–11.

    Article  CAS  PubMed  Google Scholar 

  41. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12.

    Article  CAS  PubMed  Google Scholar 

  42. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fucci C, Resnati M, Riva E, Perini T, Ruggieri E, Orfanelli U, et al. The interaction of the tumor suppressor FAM46C with p62 and FNDC3 proteins integrates protein and secretory homeostasis. Cell Rep. 2020;32:108162.

    Article  CAS  PubMed  Google Scholar 

  44. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau JL, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27:4585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mroczek S, Chlebowska J, Kulinski TM, Gewartowska O, Gruchota J, Cysewski D, et al. The non-canonical poly(A) polymerase FAM46C acts as an onco-suppressor in multiple myeloma. Nat Commun. 2017;8:619.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu YX, Shi CX, Bruins LA, Jedlowski P, Wang X, Kortum KM, et al. Loss of FAM46C promotes cell survival in myeloma. Cancer Res. 2017;77:4317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalff A, Spencer A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J. 2012;2:e89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ng YLD, Ramberger E, Bohl SR, Dolnik A, Steinebach C, Conrad T, et al. Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma. Nat Commun. 2022;13:1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boyd KD, Ross FM, Walker BA, Wardell CP, Tapper WJ, Chiecchio L, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res. 2011;17:7776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood. 2010;116:2543–53.

    Article  CAS  PubMed  Google Scholar 

  51. Besse A, Besse L, Kraus M, Mendez-Lopez M, Bader J, Xin BT, et al. Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available proteasome inhibitors. Cell Chem Biol. 2019;26:340–351.e3.

    Article  CAS  PubMed  Google Scholar 

  52. Farswan A, Jena L, Kaur G, Gupta A, Gupta R, Rani L, et al. Branching clonal evolution patterns predominate mutational landscape in multiple myeloma. Am J Cancer Res. 2021;11:5659–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao F, Liu M, Zhang QZ, Hao R. PHACTR4 regulates proliferation, migration and invasion of human hepatocellular carcinoma by inhibiting IL-6/Stat3 pathway. Eur Rev Med Pharm Sci. 2016;20:3392–9.

    CAS  Google Scholar 

  54. Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol. 2009;174:2190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mellstedt H, Ahre A, Bjorkholm M, Holm G, Johansson B, Strander H. Interferon therapy in myelomatosis. Lancet. 1979;1:245–7.

    Article  CAS  PubMed  Google Scholar 

  56. Fritz E, Ludwig H. Interferon-alpha treatment in multiple myeloma: meta-analysis of 30 randomised trials among 3948 patients. Ann Oncol. 2000;11:1427–36.

    Article  CAS  PubMed  Google Scholar 

  57. Pogue SL, Taura T, Bi M, Yun Y, Sho A, Mikesell G, et al. Targeting attenuated interferon-alpha to myeloma cells with a CD38 antibody induces potent tumor regression with reduced off-target activity. PLoS ONE. 2016;11:e0162472.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rossi EA, Rossi DL, Cardillo TM, Stein R, Goldenberg DM, Chang CH. Preclinical studies on targeted delivery of multiple IFNalpha2b to HLA-DR in diverse hematologic cancers. Blood. 2011;118:1877–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M, et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood. 2012;120:376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-wide copy number detection and visualization from targeted sequencing. PLOS Comput Biol. 2014;12:e1004873.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Wisconsin Carbone Comprehensive Cancer Center (UWCCC) for use of its Shared Services (Small Molecule Screening Facility, Flow Cytometry Laboratory, Transgenic Animal Facility, and Experimental Pathology Laboratory) to complete this research. We would also like to thank Dr. Robert Burns for his assistance in initiating the CNV study. The Graphical Abstract for this work was created with BioRender.com. This work was supported by a fellowship from the NIH grant T32 GM081061 to EF, the startup fund 252840-00 from Marshfield Clinic Research Foundation to ZW, R01CA252937 to FA, R01CA152108 to JZ, R01AI079087 and R01HL130724 to DW, and additional support from the Trillium Fund, UWCCC Developmental Therapeutics Program Pilot Awards, and Immunotherapy Pilot Award.

Author information

Authors and Affiliations

Authors

Contributions

Conception and experimental design: EF, MY, DW and JZ. Experimental execution and data analysis: EF, MY, GP, AR, AJV, YZ, YF, YS and ZW. Technical and material support: TL and MMP. Writing, review, and/or revision of the manuscript: EF, MY, AJV, ZW, NSC, FA, DW and JZ. Study supervision: DW and JZ.

Corresponding authors

Correspondence to Demin Wang or Jing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flietner, E., Yu, M., Poudel, G. et al. Molecular characterization stratifies VQ myeloma cells into two clusters with distinct risk signatures and drug responses. Oncogene 42, 1751–1762 (2023). https://doi.org/10.1038/s41388-023-02684-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02684-9

Search

Quick links