Cancer Metabolism

Carbonic anhydrase IX and acid transport in cancer


Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the ‘transport metabolon’. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

  2. 2.

    Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012).

  3. 3.

    Parks, S. K., Chiche, J. & Pouysségur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).

  4. 4.

    White, K. A., Grillo-Hill, B. K. & Barber, D. L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 130, 663–669 (2017).

  5. 5.

    Vaupel, P., Kallinowski, F. & Okunieff, P. Blood-flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

  6. 6.

    Gillies, R. J., Liu, Z. & Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. Physiol. 267, 195–203 (1994).

  7. 7.

    van Sluis, R., Raghunand, N., Bhujwalla, Z. M., Cerdán, S., Galons, J., Ballesteros, P. et al. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 41, 743–750 (2002).

  8. 8.

    Griffiths, J. R., Stevens, A. N., Iles, R. A., Gordon, R. E. & Shaw, D. 31P-NMR investigation of solid tumours in the living rat. Biosci. Rep. 1, 319–325 (1981).

  9. 9.

    Reshkin, S. J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M. et al. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 14, 2185–2197 (2000).

  10. 10.

    Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 5, 786–795 (2005).

  11. 11.

    Stock, C. & Schwab, A. Protons make tumor cells move like clockwork. Pflugers. Arch. 458, 981–992 (2009).

  12. 12.

    Brown, G. T. & Murray, G. I. Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 237, 273–281 (2015).

  13. 13.

    Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 69, 522–530 (2001).

  14. 14.

    Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

  15. 15.

    Pouyssegur, J., Sardet, C., Franchi, A., L’Allemain, G. & Paris, S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH (H+-suicide selection/cytoplasmic pH/Na+ influx/growth control/somatic cell genetics). Cell Biol. 81, 4833–4837 (1984).

  16. 16.

    Pouyssegur, J., Franchi, A., L’Allemain, G. & Paris, S. Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. FEBS Lett. 190, 115–119 (1985).

  17. 17.

    Putney, L. K. & Barber, D. L. Na-H Exchange-dependent Increase in Intracellular pH Times G2/M Entry and Transition. J. Biol. Chem. 278, 44645–44649 (2003).

  18. 18.

    Reshkin, S. J., Greco, M. R. & Cardone, R. A. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos. Trans. R Soc. B Biol. Sci. 369, 20130100–20130100 (2014).

  19. 19.

    Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M. & Barber, D. L. Increased H.+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. eLife 2015, 1–31 (2015).

  20. 20.

    Matsuyama, S. & Reed, J. C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 7, 1155–1165 (2000).

  21. 21.

    Huc, L., Rissel, M., Solhaug, A., Tekpli, X., Gorria, M., Torriglia, A. et al. Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells. J. Cell Physiol. 208, 527–537 (2006).

  22. 22.

    Hardonnière, K., Huc, L., Sergent, O., Holme, J. A. & Lagadic-Gossmann, D. Environmental carcinogenesis and pH homeostasis: not only a matter of dysregulated metabolism. Semin. Cancer Biol. 43, 49–65 (2017).

  23. 23.

    Frantz, C., Barreiro, G., Dominguez, L., Chen, X., Eddy, R., Condeelis, J. et al. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J. Cell Biol. 183, 865–879 (2008).

  24. 24.

    Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

  25. 25.

    Trivedi, B. & Danforth, W. H. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241, 4110–4112 (1966).

  26. 26.

    Peak, M., al-Habori, M. & Agius, L. Regulation of glycogen synthesis and glycolysis by insulin, pH and cell volume. Interactions between swelling and alkalinization in mediating the effects of insulin. Biochem. J. 282, 797–805 (1992).

  27. 27.

    Read, J. A., Winter, V. J., Eszes, C. M., Sessions, R. B. & Brady, R. L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43, 175–185 (2001).

  28. 28.

    Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

  29. 29.

    Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12, 487–493 (2012).

  30. 30.

    Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472–482 (2008).

  31. 31.

    Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

  32. 32.

    Huber, V., De Milito, A., Harguindey, S., Reshkin, S. J., Wahl, M. L., Rauch, C. et al. Proton dynamics in cancer. J. Transl. Med. 8, 2–5 (2010).

  33. 33.

    Hu, X., Chao, M. & Wu, H. Central role of lactate and proton in cancer cell resistance to glucose deprivation and its clinical translation. Signal Transduct. Target Ther. 2, 16047 (2017).

  34. 34.

    Persi, E., Duran-Frigola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018).

  35. 35.

    Itel, F., Al-Samir, S., Öberg, F., Chami, M., Kumar, M., Supuran, C. T. et al. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J. 26, 5182–5191 (2012).

  36. 36.

    Arias-Hidalgo, M., Al-Samir, S., Gros, G. & Endeward, V. Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes. Am. J. Physiol. Physiol. 315, C137–C140 (2018).

  37. 37.

    Bröer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S. et al. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J. Biol. Chem. 272, 30096–30102 (1997).

  38. 38.

    Bröer, S., Schneider, H. P., Bröer, A., Rahman, B., Hamprecht, B. & Deitmer, J. W. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J. 333, 167–174 (1998).

  39. 39.

    Halestrap, A. P. & Price, N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J .343, 281–299 (1999).

  40. 40.

    Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W. & Bröer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

  41. 41.

    Lambert, D. W., Wood, I. S., Ellis, A. & Shirazi-Beechey, S. P. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br. J. Cancer 86, 1262–1269 (2002).

  42. 42.

    Mathupala, S. P., Parajuli, P. & Sloan, A. E. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 55, 1410–1419 (2004).

  43. 43.

    Pinheiro, C., Longatto-Filho, A., Scapulatempo, C., Ferreira, L., Martins, S., Pellerin, L. et al. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows. Arch. 452, 139–146 (2008).

  44. 44.

    Pinheiro, C., Albergaria, A., Paredes, J., Sousa, B., Dufloth, R., Vieira, D. et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56, 860–867 (2010).

  45. 45.

    Hao, J., Chen, H., Madigan, M. C., Cozzi, P. J., Beretov, J., Xiao, W. et al. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer 103, 1008–1018 (2010).

  46. 46.

    Pinheiro, C., Longatto-Filho, A., Azevedo-Silva, J., Casal, M., Schmitt, F. C. & Baltazar, F. Role of monocarboxylate transporters in human cancers: state of the art. J. Bioenerg. Biomembr. 44, 127–139 (2012).

  47. 47.

    Dovmark, T. H., Saccomano, M., Hulikova, A., Alves, F. & Swietach, P. Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene 36, 4538–4550 (2017).

  48. 48.

    Swietach, P., Vaughan-Jones, R. D., Harris, A. L. & Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R Soc. B Biol. Sci. 369, 20130099–20130099 (2014).

  49. 49.

    Swietach, P. What is pH regulation, and why do cancer cells need it? Cancer Metastasis Rev. 38, 5–15 (2019).

  50. 50.

    Andersen, A. P., Samsøe-Petersen, J., Oernbo, E. K., Boedtkjer, E., Moreira, J. M. A., Kveiborg, M. et al. The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int. J. Cancer 142, 2529–2542 (2018).

  51. 51.

    Grinstein, S., Woodside, M., Waddell, T. K., Downey, G. P., Orlowski, J., Pouyssegur, J. et al. Focal localization of the NHE-1 isoform of the Na+/H+ antiport: assessment of effects on intracellular pH. EMBO J. 12, 5209–5218 (1993).

  52. 52.

    Stock, C., Mueller, M., Kraehling, H., Mally, S., Noël, J., Eder, C. et al. pH nanoenvironment at the surface of single melanoma cells. Cell Physiol. Biochem. 20, 679–686 (2007).

  53. 53.

    Stüwe, L., Müller, M., Fabian, A., Waning, J., Mally, S., Noël, J. et al. pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J. Physiol. 585, 351–360 (2007).

  54. 54.

    Martin, C., Pedersen, S. F., Schwab, A. & Stock, C. Intracellular pH gradients in migrating cells. Am. J. Physiol. Cell Physiol. 300, 490–495 (2011).

  55. 55.

    Ludwig, F. T., Schwab, A. & Stock, C. The Na+/H+-exchanger (NHE1) generates pH nanodomains at focal adhesions. J. Cell Physiol. 228, 1351–1358 (2013).

  56. 56.

    Stock, C., Cardone, R. A., Busco, G., Krähling, H., Schwab, A. & Reshkin, S. J. Protons extruded by NHE1: digestive or glue? Eur. J. Cell Biol. 87, 591–599 (2008).

  57. 57.

    Vahle, A.-K., Domikowsky, B., Schwöppe, C., Krähling, H., Mally, S., Schäfers, M. et al. Extracellular matrix composition and interstitial pH modulate NHE1-mediated melanoma cell motility. Int. J. Oncol. 44, 78–90 (2014).

  58. 58.

    Martinez-Zaguilan, R., Lynch, R. M., Martinez, G. M. & Gillies, R. J. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am. J. Physiol. Cell Physiol. 265, 1015–1029 (2013).

  59. 59.

    Ohta, T., Numata, M., Yagishita, H., Futagami, F., Tsukioka, Y., Kitagawa, H. et al. Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. Br. J. Cancer 73, 1511–1517 (1996).

  60. 60.

    Lu, X., Qin, W., Li, J., Tan, N., Pan, D., Zhang, H. et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res. 65, 6843–6849 (2005).

  61. 61.

    Hinton, A., Sennoune, S. R., Bond, S., Fang, M., Reuveni, M., Sahagian, G. G. et al. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J. Biol. Chem. 284, 16400–16408 (2009).

  62. 62.

    Capecci, J. & Forgac, M. The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J. Biol. Chem. 288, 32731–32741 (2013).

  63. 63.

    Cotter, K., Capecci, J., Sennoune, S., Huss, M., Maier, M., Martinez-Zaguilan, R. et al. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J. Biol. Chem. 290, 3680–3692 (2015).

  64. 64.

    Kulshrestha, A., Katara, G. K., Ibrahim, S., Pamarthy, S., Jaiswal, M. K., Gilman Sachs, A. et al. Vacuolar ATPase ‘a2’ isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget 6, 3797–3810 (2015).

  65. 65.

    Xu, J., Xie, R., Liu, X., Wen, G., Jin, H., Yu, Z. et al. Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma. Carcinogenesis 33, 2432–2440 (2012).

  66. 66.

    Stransky, L., Cotter, K. & Forgac, M. The function of V-ATPases in cancer. Physiol. Rev. 96, 1071–1091 (2016).

  67. 67.

    McGuire, C., Stransky, L., Cotter, K. & Forgac, M. Regulation of V-ATPase activity. Front. Biosci. (Landmark Ed) 22, 609–622 (2017).

  68. 68.

    Boedtkjer, E., Moreira, J. M. A., Mele, M., Vahl, P., Wielenga, V. T., Christiansen, P. M. et al. Contribution of Na+,HCO3–cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int. J. Cancer 132, 1288–1299 (2013).

  69. 69.

    Parks, S. K. & Pouyssegur, J. The Na+/HCO3 co-transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. J. Cell Physiol. 230, 1954–1963 (2015).

  70. 70.

    Lee, S., Axelsen, T. V., Jessen, N., Pedersen, S. F., Vahl, P. & Boedtkjer, E. Na+,HCO3 cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 37, 5569–5584 (2018).

  71. 71.

    Boedtkjer, E. Na+, HCO3 cotransporter NBCn1 accelerates breast carcinogenesis. Cancer Metastasis Rev.; (2019).

  72. 72.

    Svastova, E., Witarski, W., Csaderova, L., Kosik, I., Skvarkova, L., Hulikova, A. et al. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J. Biol. Chem. 287, 3392–3402 (2012).

  73. 73.

    Parks, S. K., Chiche, J. & Pouyssegur, J. pH control mechanisms of tumor survival and growth. J. Cell Physiol. 226, 299–308 (2011).

  74. 74.

    Gorbatenko, A., Olesen, C. W., Boedtkjer, E. & Pedersen, S. F. Regulation and roles of bicarbonate transporters in cancer. Front. Physiol. 5, 130 (2014).

  75. 75.

    Parks, S. K., Cormerais, Y., Marchiq, I. & Pouyssegur, J. Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol. Aspects Med. 47–48, 3–14 (2016).

  76. 76.

    Parks, S. K., Cormerais, Y. & Pouysségur, J. Hypoxia and cellular metabolism in tumour pathophysiology. J. Physiol. 595, 2439–2450 (2017).

  77. 77.

    Humphreys, B. D., Jiang, L., Chernova, M. N. & Alper, S. L. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. Am. J. Physiol. Physiol. 267, C1295–C1307 (1994).

  78. 78.

    Stewart, A. K., Chernova, M. N., Kunes, Y. Z. & Alper, S. L. Regulation of AE2 anion exchanger by intracellular pH: critical regions of the NH2-terminal cytoplasmic domain. Am. J. Physiol. Physiol. 281, C1344–C1354 (2001).

  79. 79.

    Alper, S. L. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J. Exp. Biol. 212, 1672–1683 (2009).

  80. 80.

    Stewart, A. K., Chernova, M. N., Shmukler, B. E., Wilhelm, S. & Alper, S. L. Regulation of AE2-mediated Cl transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain. J. Gen. Physiol. 120, 707–722 (2002).

  81. 81.

    Stewart, A. K., Kurschat, C. E., Vaughan-Jones, R. D. & Alper, S. L. Putative re-entrant loop 1 of AE2 transmembrane domain has a major role in acute regulation of anion exchange by pH. J. Biol. Chem. 284, 6126–6139 (2009).

  82. 82.

    Aronson, P. S., Nee, J. & Suhm, M. A. Modifier role of internal H+ in activating the Na+–H+ exchanger in renal microvillus membrane vesicles. Nature 299, 161–163 (1982).

  83. 83.

    Wakabayashi, S., Hisamitsu, T., Pang, T. & Shigekawa, M. Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J. Biol. Chem. 278, 11828–11835 (2003).

  84. 84.

    Lacroix, J., Poët, M., Maehrel, C. & Counillon, L. A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Rep. 5, 91–96 (2004).

  85. 85.

    Paris, S. & Pouyssegur, J. Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+. J. Biol. Chem. 259, 10989–10994 (1984).

  86. 86.

    Bourguignon, L. Y. W., Singleton, P. A., Diedrich, F., Stern, R. & Gilad, E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 279, 26991–27007 (2004).

  87. 87.

    Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E. et al. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J. 24, 3903–3915 (2010).

  88. 88.

    Lucien, F., Brochu-Gaudreau, K., Arsenault, D., Harper, K. & Dubois, C. M. Hypoxia-induced invadopodia formation involves activation of NHE-1 by the p90 ribosomal s6 kinase (p90RSK). PLoS One 6, e28851 (2011).

  89. 89.

    Amith, S. R. & Fliegel, L. Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis. Cancer Res. 73, 1259–1264 (2013).

  90. 90.

    Mboge, M. Y., Mahon, B. P., McKenna, R. & Frost, S. C. Carbonic anhydrases: role in pH control and cancer. Metabolites 8, 19 (2018).

  91. 91.

    Pastorekova, S. & Zavada, J. Carbonic anhydrase IX (CA IX) as a potential target for cancer therapy. Caner Ther. 2, 245–262 (2004).

  92. 92.

    Frost, S. C. & McKenna, R. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (Springer Netherlands, Dordrecht 2014).

  93. 93.

    Tolvanen, M. E. E., Ortutay, C., Barker, H. R., Aspatwar, A., Patrikainen, M. & Parkkila, S. Analysis of evolution of carbonic anhydrases IV and XV reveals a rich history of gene duplications and a new group of isozymes. Bioorg. Med. Chem. 21, 1503–1510 (2013).

  94. 94.

    Aspatwar, A., Tolvanen, M. E. & Parkkila, S. Phylogeny and expression of carbonic anhydrase-related proteins. BMC Mol. Biol. 11, 25 (2010).

  95. 95.

    Aspatwar, A., Tolvanen, M. E. E., Ortutay, C. & Parkkila, S. Carbonic anhydrase related proteins: molecular biology and evolution. Subcell Biochem. 75, 135–156 (2014).

  96. 96.

    Pastorek, J., Pastorekova, S., Callebaut, I., Mornon, J. P., Zelník, V., Opavský, R. et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene 9, 2877–2888 (1994).

  97. 97.

    Parkkila, A. K., Herva, R., Parkkila, S. & Rajaniemi, H. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours. Histochem. J. 27, 974–982 (1995).

  98. 98.

    Saarnio, J., Parkkila, S., Parkkila, A. K., Haukipuro, K., Pastorekova, S., Pastorek, J. et al. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA IX, with potential value as a marker of cell proliferation. Am. J. Pathol. 153, 279–285 (1998).

  99. 99.

    Karhumaa, P., Kaunisto, K., Parkkila, S., Waheed, A., Pastorekova, S., Pastorek, J. et al. Expression of the transmembrane carbonic anhydrases, CA IX and CA XII, in the human male excurrent ducts. Mol. Hum. Reprod. 7, 611–616 (2001).

  100. 100.

    Yoo, C. W., Nam, B. H., Kim, J. Y., Shin, H. J., Lim, H., Lee, S. et al. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome. Radiat. Oncol. 5, 1–10 (2010).

  101. 101.

    Zheng, Y., Xu, B., Zhao, Y., Gu, H., Li, C., Wang, Y. et al. CA1 contributes to microcalcification and tumourigenesis in breast cancer. BMC Cancer 15, 1–15 (2015).

  102. 102.

    Zhou, Y., Mokhtari, R. B., Pan, J., Cutz, E. & Yeger, H. Carbonic anhydrase II mediates malignant behavior of pulmonary neuroendocrine tumors. Am. J. Respir Cell Mol. Biol. 52, 183–192 (2015).

  103. 103.

    Wang, D.-B., Lu, X.-K., Zhang, X., Li, Z.-G. & Li, C.-X. Carbonic anhydrase 1 is a promising biomarker for early detection of non-small cell lung cancer. Tumour Biol. 37, 553–559 (2016).

  104. 104.

    Parkkila, S., Lasota, J., Fletcher, J. A., Ou, W. B., Kivelä, A. J., Nuorva, K. et al. Carbonic anhydrase II. A novel biomarker for gastrointestinal stromal tumors. Mod. Pathol 23, 743–750 (2010).

  105. 105.

    Pastorekova, S., Parkkila, S., Parkkila, A. K., Opavský, R., Zelník, V., Saarnio, J. et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112, 398–408 (1997).

  106. 106.

    Saarnio, J., Parkkila, S., Parkkila, A. K., Waheed, A., Casey, M. C., Zhou, X. Y. et al. Immunohistochemistry of carbonic anhydrase isozyme IX (MN/CA IX) in human gut reveals polarized expression in the epithelial cells with the highest proliferative capacity. J. Histochem. Cytochem. 46, 497–504 (1998).

  107. 107.

    Ivanov, S., Liao, S. Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G. et al. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am. J. Pathol. 158, 905–919 (2001).

  108. 108.

    Opavský, R., Pastorekova, S., Zelník, V., Gibadulinová, A., Stanbridge, E. J., Závada, J. et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 33, 480–487 (1996).

  109. 109.

    Alterio, V., Hilvo, M., Di Fiore, A., Supuran, C. T., Pan, P., Parkkila, S. et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc. Natl Acad. Sci. USA 106, 16233–16238 (2009).

  110. 110.

    Pastorek, J. & Pastorekova, S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use. Semin. Cancer Biol. 31, 52–64 (2015).

  111. 111.

    Závada, J., Závadová, Z., Pastorek, J., Biesová, Z., Jez, J., Jezek, J. et al. Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br. J. Cancer 82, 1808–1813 (2000).

  112. 112.

    Csaderova, L., Debreova, M., Radvak, P., Stano, M., Vrestiakova, M., Kopacek, J. et al. The effect of carbonic anhydrase IX on focal contacts during cell spreading and migration. Front. Physiol. 4, 271 (2013).

  113. 113.

    Innocenti, A., Pastorekova, S., Pastorek, J., Scozzafava, A., De Simone, G. & Supuran, C. T. The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as anintrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg. Med. Chem. Lett. 19, 5825–5828 (2009).

  114. 114.

    Ames, S., Pastorekova, S. & Becker, H. M. The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget 9, 27940–27957 (2018).

  115. 115.

    Wykoff, C. C., Beasley, N. J., Watson, P. H., Turner, K. J., Pastorek, J., Sibtain, A. et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 60, 7075–7083 (2000).

  116. 116.

    Kaluz, S., Kaluzová, M., Chrastina, A., Olive, P. L., Pastorekova, S., Pastorek, J. et al. Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1α stabilization: a role for phosphatidylinositol 3′-kinase. Cancer Res. 62, 4469–4477 (2002).

  117. 117.

    Kopacek, J., Barathova, M., Dequiedt, F., Sepelakova, J., Kettmann, R., Pastorek, J. et al. MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. Biochim. Biophys. Acta - Gene Struct. Expr. 2005, 41–49 (1729).

  118. 118.

    Liao, S. Y., Brewer, C., Závada, J., Pastorek, J., Pastorekova, S., Manetta, A. et al. Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am. J. Pathol. 145, 598–609 (1994).

  119. 119.

    Giatromanolaki, A., Koukourakis, M. I., Sivridis, E., Pastorek, J., Wykoff, C. C., Gatter, K. C. et al. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res. 61, 7992–7998 (2001).

  120. 120.

    Loncaster, J. A., Harris, A. L., Davidson, S. E., Logue, J. P., Hunter, R. D., Wycoff, C. C. et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 61, 6394–6399 (2001).

  121. 121.

    Potter, C. P. S. & Harris, A. L. Diagnostic, prognostic and therapeutic implications of carbonic anhydrases in cancer. Br. J. Cancer 89, 2–7 (2003).

  122. 122.

    Proescholdt, Ma, Merrill, M. J., Stoerr, E.-M., Lohmeier, A., Pohl, F. & Brawanski, A. Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro. Oncol. 14, 1357–1366 (2012).

  123. 123.

    Lou, Y., McDonald, P. C., Oloumi, A., Chia, S., Ostlund, C., Ahmadi, A. et al. Targeting tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 71, 3364–3376 (2011).

  124. 124.

    Švastová, E., Žilka, N., Zat’ovičová, M., Gibadulinová, A., Čiampor, F., Pastorek, J. et al. Carbonic anhydrase IX reduces E-cadherin-mediated adhesion of MDCK cells via interaction with β-catenin. Exp. Cell Res. 290, 332–345 (2003).

  125. 125.

    Robertson, N., Potter, C. & Harris, A. L. Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res. 64, 6160–6165 (2004).

  126. 126.

    Wang, Y., Wang, X.-Y., Subjeck, J. R. & Kim, H. L. Carbonic anhydrase IX has chaperone-like functions and is an immunoadjuvant. Mol. Cancer Ther. 7, 3867–3877 (2008).

  127. 127.

    Chiche, J., Ilc, K., Laferrière, J., Trottier, E., Dayan, F., Mazure, N. M. et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69, 358–368 (2009).

  128. 128.

    McIntyre, A., Patiar, S., Wigfield, S., Li, J.-L., Ledaki, I., Turley, H. et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin. Cancer Res. 18, 3100–3111 (2012).

  129. 129.

    Lock, F. E., McDonald, P. C., Lou, Y., Serrano, I., Chafe, S. C., Ostlund, C. et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 32, 5210–5219 (2013).

  130. 130.

    Sedlakova, O., Svastova, E., Takacova, M., Kopacek, J., Pastorek, J. & Pastorekova, S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front. Physiol. 4, 400 (2014).

  131. 131.

    Swietach, P., Wigfield, S., Cobden, P., Supuran, C. T., Harris, A. L. & Vaughan-Jones, R. D. Tumor-associated carbonic anhydrase 9 spatially coordinates intracellular pH in three-dimensional multicellular growths. J. Biol. Chem. 283, 20473–20483 (2008).

  132. 132.

    Swietach, P., Patiar, S., Supuran, C. T., Harris, A. L. & Vaughan-Jones, R. D. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J. Biol. Chem. 284, 20299–20310 (2009).

  133. 133.

    Li, Y., Tu, C., Wang, H., Silverman, D. N. & Frost, S. C. Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells. J. Biol. Chem. 286, 15789–15796 (2011).

  134. 134.

    Chen, Z., Ai, L., Mboge, M. Y., Tu, C., McKenna, R., Brown, K. D. et al. Differential expression and function of CAIX and CAXII in breast cancer: a comparison between tumorgraft models and cells. PLoS ONE 13, 1–25 (2018).

  135. 135.

    Lee, S. -H., McIntyre, D., Honess, D., Hulikova, A., Pacheco-Torres, J., Cerdán, S. et al. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br. J. Cancer 119, 622 (2018).

  136. 136.

    Mboge, M. Y., Chen, Z., Khokhar, D., Wolff, A., Ai, L., Heldermon, C. D. et al. A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells. Biochem. J.; (2019).

  137. 137.

    Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S. & Gatenby, R. A. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

  138. 138.

    Swietach, P., Hulikova, A., Vaughan-Jones, R. D. & Harris, A. L. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene 29, 6509–6521 (2010).

  139. 139.

    Supuran, C. T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 7, 48 (2017).

  140. 140.

    Srere, P. A. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56, 89–124 (1987).

  141. 141.

    Srere, P. A. The metabolon. Trends Biochem. Sci. 10, 109–110 (1985).

  142. 142.

    Deitmer, J. W. & Becker, H. M. Transport metabolons with carbonic anhydrases. Front. Physiol. 4, 291 (2013).

  143. 143.

    Kifor, G., Toon, M. R., Janoshazi, A. & Solomon, A. K. Interaction between red cell membrane band 3 and cytosolic carbonic anhydrase. J. Membr. Biol. 134, 169–179 (1993).

  144. 144.

    Vince, J. W. & Reithmeier, R. A. F. Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1−/HCO3− exchanger. J. Biol. Chem. 273, 28430–28437 (1998).

  145. 145.

    Vince, J. W. & Reithmeier, R. A. F. Identification of the carbonic anhydrase II binding site in the Cl(−)/HCO(3)(−) anion exchanger AE1. Biochemistry 39, 5527–5533 (2000).

  146. 146.

    Vince, J. W., Carlsson, U. & Reithmeier, R. A. F. Localization of the Cl/HCO3 anion exchanger binding site to the amino-terminal region of carbonic anhydrase II. Biochemistry 39, 13344–13349 (2000).

  147. 147.

    Sterling, D., Reithmeier, R. A. F. & Casey, J. R. A transport metabolon: functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J. Biol. Chem. 276, 47886–47894 (2001).

  148. 148.

    Gross, E., Pushkin, A., Abuladze, N., Fedotoff, O. & Kurtz, I. Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J. Physiol. 544, 679–685 (2002).

  149. 149.

    Pushkin, A., Abuladze, N., Gross, E., Newman, D., Tatishchev, S., Lee, I. et al. Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J. Physiol. 559, 55–65 (2004).

  150. 150.

    Loiselle, F. B., Jaschke, P. & Casey, J. R. Structural and functional characterization of the human NBC3 sodium/bicarbonate co-transporter carboxyl-terminal cytoplasmic domain. Mol. Membr. Biol. 20, 307–317 (2003).

  151. 151.

    Loiselle, F. B., Morgan, P. E., Alvarez, B. V. & Casey, J. R. Regulation of the human NBC3 Na+/HCO3 cotransporter by carbonic anhydrase II and PKA. Am. J. Physiol. Cell Physiol. 286, 1423–1433 (2004).

  152. 152.

    Becker, H. M. & Deitmer, J. W. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3 cotransporter. J. Biol. Chem. 282, 13508–13521 (2007).

  153. 153.

    Schueler, C., Becker, H. M., McKenna, R. & Deitmer, J. W. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase. PLoS ONE 6, e27167 (2011).

  154. 154.

    Johnson, D. E. & Casey, J. R. Bicarbonate transport metabolons. In Drug Design of Zinc-Enzyme Inhibitors (eds Claudiu T. Supuran & Jean-Yves Winum)415–437 (John Wiley & Sons, Inc., Hoboken, NJ, 2014).

  155. 155.

    Sterling, D., Brown, N. J. D., Supuran, C. T. & Casey, J. R. The functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II. Am. J. Physiol. Cell Physiol. 283, 1522–1529 (2002).

  156. 156.

    Alvarez, B. V., Loiselle, F. B., Supuran, C. T., Schwartz, G. J. & Casey, J. R. Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochemistry 42, 12321–12329 (2003).

  157. 157.

    Morgan, P. E., Pastorekova, S., Stuart-Tilley, A. K., Alper, S. L. & Casey, J. R. Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters. AJP Cell Physiol. 293, 738–748 (2007).

  158. 158.

    Li, X., Alvarez, B. V., Casey, J. R., Reithmeier, R. A. F. & Fliegel, L. Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J. Biol. Chem. 277, 36085–36091 (2002).

  159. 159.

    Li, X., Liu, Y., Alvarez, B. V., Casey, J. R. & Fliegel, L. A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45, 2414–2424 (2006).

  160. 160.

    Ro, H. & Carson, J. H. pH microdomains in oligodendrocytes. J. Biol. Chem. 279, 37115–37123 (2004).

  161. 161.

    Krishnan, D., Liu, L., Wiebe, S. A., Casey, J. R., Cordat, E. & Alexander, R. T. Carbonic anhydrase II binds to and increases the activity of the epithelial sodium-proton exchanger, NHE3. Am. J. Physiol. - Ren. Physiol. 309, 383–392 (2015).

  162. 162.

    Wu, Q., Pierce, W. M. & Delamere, N. A. Cytoplasmic pH responses to carbonic anhydrase inhibitors in cultured rabbit nonpigmented ciliary epithelium. J. Membr. Biol. 162, 31–38 (1998).

  163. 163.

    Liskova, V., Hudecova, S., Lencesova, L., Iuliano, F., Sirova, M., Ondrias, K. et al. Type 1 sodium calcium exchanger forms a complex with carbonic anhydrase IX and via reverse mode activity contributes to pH control in hypoxic tumors. Cancers 11, (1139 (2019).

  164. 164.

    Lu, J., Daly, C. M., Parker, M. D., Gill, H. S., Piermarini, P. M., Pelletier, M. F. et al. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. J. Biol. Chem. 281, 19241–19250 (2006).

  165. 165.

    Piermarini, P. M., Kim, E. Y. & Boron, W. F. Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. J. Biol. Chem. 282, 1409–1421 (2007).

  166. 166.

    Yamada, H., Horita, S., Suzuki, M., Fujita, T. & Seki, G. Functional role of a putative carbonic anhydrase II-binding domain in the electrogenic Na+-HCO3 cotransporter NBCe1 expressed in Xenopus oocytes. Channels 5, 106–109 (2011).

  167. 167.

    Al-Samir, S., Papadopoulos, S., Scheibe, R. J., Meißner, J. D., Cartron, J.-P., Sly, W. S. et al. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. J. Physiol. 591, 4963–4982 (2013).

  168. 168.

    McMurtrie, H. L., Cleary, H. J., Alvarez, B. V., Loiselle, F. B., Sterling, D., Morgan, P. E. et al. The bicarbonate transport metabolon. J. Enzyme Inhib. Med. Chem. 19, 231–236 (2004).

  169. 169.

    Becker, H. M., Klier, M. & Deitmer, J. W. Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters. In Sub-Cellular Biochemistry (eds Frost, S. C. & McKenna, R.) 105–134 (Dordrecht: Springer Netherlands, Dordrecht, 2014).

  170. 170.

    Alvarez, B. V., Johnson, D. E., Sowah, D., Soliman, D., Light, P. E., Xia, Y. et al. Carbonic anhydrase inhibition prevents and reverts cardiomyocyte hypertrophy. J. Physiol. 579, 127–145 (2007).

  171. 171.

    Villafuerte, F. C., Swietach, P., Youm, J.-B., Ford, K., Cardenas, R., Supuran, C. T. et al. Facilitation by intracellular carbonic anhydrase of Na+-HCO3 co-transport but not Na+/H+ exchange activity in the mammalian ventricular myocyte. J. Physiol. 592, 991–1007 (2014).

  172. 172.

    Svichar, N., Waheed, A., Sly, W. S., Hennings, J. C., Hubner, C. A. & Chesler, M. Carbonic anhydrases CA4 and CA14 both enhance AE3-mediated Cl–HCO3 exchange in hippocampal neurons. J. Neurosci. 29, 3252–3258 (2009).

  173. 173.

    Alvarez, B. V., Gilmour, G. S., Mema, S. C., Martin, B. T., Shull, G. E., Casey, J. R. et al. Blindness caused by deficiency in AE3 chloride/bicarbonate exchanger. PLoS ONE 2, e839 (2007).

  174. 174.

    Stuart-Tilley, A., Sardet, C., Pouyssegur, J., Schwartz, M. A., Brown, D. & Alper, S. L. Immunolocalization of anion exchanger AE2 and cation exchanger NHE-1 in distinct adjacent cells of gastric mucosa. Am. J. Physiol. 266, 559–568 (1994).

  175. 175.

    Ditte, P., Dequiedt, F., Svastova, E., Hulikova, A., Ohradanova-Repic, A., Zatovicova, M. et al. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res. 71, 7558–7567 (2011).

  176. 176.

    Jamali, S., Klier, M., Ames, S., Barros, L. F., McKenna, R., Deitmer, J. W. et al. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci. Rep. 5, 13605 (2015).

  177. 177.

    Becker, H. M., Hirnet, D., Fecher-Trost, C., Sültemeyer, D. & Deitmer, J. W. Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J. Biol. Chem. 280, 39882–39889 (2005).

  178. 178.

    Becker, H. M. & Deitmer, J. W. Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1. J. Biol. Chem. 283, 21655–21667 (2008).

  179. 179.

    Becker, H. M., Klier, M. & Deitmer, J. W. Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II. J. Membr. Biol. 234, 125–135 (2010).

  180. 180.

    Becker, H. M., Klier, M., Schüler, C., McKenna, R. & Deitmer, J. W. Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proc. Natl Acad. Sci. USA 108, 3071–3076 (2011).

  181. 181.

    Klier, M., Andes, F. T., Deitmer, J. W. & Becker, H. M. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. J. Biol. Chem. 289, 2765–2775 (2014).

  182. 182.

    Noor, S. I., Dietz, S., Heidtmann, H., Boone, C. D., McKenna, R., Deitmer, J. W. et al. Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II. J. Biol. Chem. 290, 4476–4486 (2015).

  183. 183.

    Noor, S. I., Pouyssegur, J., Deitmer, J. W. & Becker, H. M. Integration of a ‘proton antenna’ facilitates transport activity of the monocarboxylate transporter MCT4. FEBS J. 284, 149–162 (2017).

  184. 184.

    Noor, S. I., Jamali, S., Ames, S., Langer, S., Deitmer, J. W. & Becker, H. M. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife 7, 1–31 (2018).

  185. 185.

    Stridh, M. H., Alt, M. D., Wittmann, S., Heidtmann, H., Aggarwal, M., Riederer, B. et al. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II. J. Physiol. 590, 2333–2351 (2012).

  186. 186.

    Martínez, C., Kalise, D. & Barros, L. F. General requirement for harvesting antennae at Ca2+ and H+ channels and transporters. Front. Neuroenergetics 2, 1–8 (2010).

  187. 187.

    Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M. et al. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: Insights into the proton transfer mechanism. Biochemistry 46, 2930–2937 (2007).

  188. 188.

    Shinobu, A. & Agmon, N. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis. J. Phys. Chem. A 113, 7253–7266 (2009).

  189. 189.

    Ames, S., Andring, J. T., McKenna, R. & Becker, H. M. CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene; (2019).

  190. 190.

    Pinheiro, C., Reis, R. M., Ricardo, S., Longatto-Filho, A., Schmitt, F. & Baltazar, F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J. Biomed. Biotechnol. 2010, 427694 (2010).

  191. 191.

    Pertega-Gomes, N., Felisbino, S., Massie, C. E., Vizcaino, J. R., Coelho, R., Sandi, C. et al. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol. 236, 517–530 (2015).

  192. 192.

    Eilertsen, M., Andersen, S., Al-Saad, S., Kiselev, Y., Donnem, T., Stenvold, H. et al. Monocarboxylate transporters 1-4 in NSCLC: MCT1 is an independent prognostic marker for survival. PLoS ONE 9, e105038 (2014).

  193. 193.

    Wilson, M. C., Meredith, D., Manning Fox, J. E., Manoharan, C., Davies, A. J. & Halestrap, A. P. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is embigin (gp70). J. Biol. Chem. 280, 27213–27221 (2005).

  194. 194.

    Forero-Quintero, L. S., Ames, S., Schneider, H.-P., Thyssen, A., Boone, C. D., Andring, J. T. et al. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J. Biol. Chem. 294, 593–607 (2018).

  195. 195.

    Hiremath, S. A., Surulescu, C., Jamali, S., Ames, S., Deitmer, J. W. & Becker, H. M. Modeling of pH regulation in tumor cells: direct interaction between proton-coupled lactate transporters and cancer-associated carbonic anhydrase. Math. Biosci. Eng. 16, 320–337 (2019).

  196. 196.

    McDonald, P. C., Winum, J., Supuran, C. T. & Dedhar, S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3, 84–97 (2012).

  197. 197.

    Supuran, C. T. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin. Investig. Drugs 27, 963–970 (2018).

  198. 198.

    Supuran, C. T., Alterio, V., Di Fiore, A., D’ Ambrosio, K., Carta, F., Monti S.M. et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med. Res. Rev. 38, 1799–1836 (2018).

  199. 199.

    Avkiran, M., Cook, A. R. & Cuello, F. Targeting Na+/H+ exchanger regulation for cardiac protection: a RSKy approach? Curr. Opin. Pharmacol. 8, 133–140 (2008).

  200. 200.

    Mentzer, R. M., Bartels, C., Bolli, R., Boyce, S., Buckberg, G. D., Chaitman, B. et al. Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann. Thorac. Surg. 85, 1261–1270 (2008).

  201. 201.

    Mboge, M. Y., Brown, K. D., Bozdag, M., Chen, Z., Carta, F., Mathias, J. V. et al. Selective inhibition of carbonic anhydrase IX over carbonic anhydrase XII in breast cancer cells using benzene sulfonamides: disconnect between activity and growth inhibition. PLoS ONE 13, e0207417 (2018).

  202. 202.

    Polański, R., Hodgkinson, C. L., Fusi, A., Nonaka, D., Priest, L., Kelly, P. et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin. Cancer Res. 20, 926–937 (2014).

  203. 203.

    Guan, X., Bryniarski, M. A. & Morris, M. E. In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J. 21, 3 (2019).

  204. 204.

    Guan, X., Rodriguez-Cruz, V. & Morris, M. E. Cellular uptake of MCT1 inhibitors AR-C155858 and AZD3965 and their effects on MCT-mediated transport of L-lactate in murine 4T1 breast tumor cancer cells. AAPS J. 21, 13 (2019).

  205. 205.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  206. 206.

    Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat. Cell Biol. 4, 97–100 (2002).

Download references

Author contributions

H.M.B. wrote the paper.

Author information

Correspondence to Holger M. Becker.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethics approval and consent to participate

Not applicable.


The author’s own contributions to the field were funded by the Deutsche Forschungsgemeinschaft (BE 4310/6-1), the International Research Training Group (IRTG 1830/1), the Research Initiative BioComp, the Stiftung Rheinland-Pfalz für Innovation (961-386261/957) and the Landesschwerpunkt Membrantransport.

Consent to publish

Not applicable.

Data availability

Not applicable.

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, H.M. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 122, 157–167 (2020).

Download citation

Further reading