Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How protons pave the way to aggressive cancers

Abstract

Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid–base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disturbances to the acid-handling cascade in tumours.
Fig. 2: The relationship between pHe and pHi can be dynamic in cancer.
Fig. 3: The acidic tumour microenvironment alters cancer cell phenotypes.
Fig. 4: The acidic tumour microenvironment shapes the interactions between cancer and stromal cells.

Similar content being viewed by others

References

  1. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956). Warburg presents his hypothesis for cancer cell transformation based on the notion that transitioning away from respiration enables cells to shed the constraints normally imposed by O2 supply.

    CAS  PubMed  Google Scholar 

  3. Griffiths, J. R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  5. Rotin, D., Wan, P., Grinstein, S. & Tannock, I. Cytotoxicity of compounds that interfere with the regulation of intracellular pH: a potential new class of anticancer drugs. Cancer Res. 47, 1497–1504 (1987).

    CAS  PubMed  Google Scholar 

  6. Tannock, I. F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–44384 (1989).

    CAS  PubMed  Google Scholar 

  7. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  9. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    PubMed  Google Scholar 

  10. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    CAS  PubMed  Google Scholar 

  11. Pawson, T. & Scott, J. D. Protein phosphorylation in signaling — 50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

    CAS  PubMed  Google Scholar 

  12. Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).

    CAS  PubMed  Google Scholar 

  13. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    CAS  PubMed  Google Scholar 

  14. Sim, A. T. & Scott, J. D. Targeting of PKA, PKC and protein phosphatases to cellular microdomains. Cell Calcium 26, 209–217 (1999).

    CAS  PubMed  Google Scholar 

  15. Ubersax, J. A. & Ferrell, J. E. Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    CAS  PubMed  Google Scholar 

  16. Monteith, G. R., Prevarskaya, N. & Roberts-Thomson, S. J. The calcium–cancer signalling nexus. Nat. Rev. Cancer 17, 367–380 (2017).

    CAS  PubMed  Google Scholar 

  17. Schonichen, A., Webb, B. A., Jacobson, M. P. & Barber, D. L. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42, 289–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    CAS  PubMed  Google Scholar 

  19. Flinck, M., Kramer, S. H. & Pedersen, S. F. Roles of pH in control of cell proliferation. Acta Physiol. 223, e13068 (2018).

    CAS  Google Scholar 

  20. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).

    CAS  PubMed  Google Scholar 

  21. Ulmschneider, B. et al. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J. Cell Biol. 215, 345–355 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwab, A., Fabian, A., Hanley, P. J. & Stock, C. Role of ion channels and transporters in cell migration. Physiol. Rev. 92, 1865–1913 (2012).

    CAS  PubMed  Google Scholar 

  23. Deyev, I. E. et al. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab. 13, 679–689 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, L., Hall, C., Li, J., Choi, E. & Bai, X. C. Structural basis of the alkaline pH-dependent activation of insulin receptor-related receptor. Nat. Struct. Mol. Biol. 30, 661–669 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazyken, D., Lentz, S. I. & Fingar, D. C. Alkaline intracellular pH (pHi) activates AMPK–mTORC2 signaling to promote cell survival during growth factor limitation. J. Biol. Chem. 297, 101100 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi, C. H., Webb, B. A., Chimenti, M. S., Jacobson, M. P. & Barber, D. L. pH sensing by FAK–His58 regulates focal adhesion remodeling. J. Cell Biol. 202, 849–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikhailik, A. et al. A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol. Cell 27, 486–497 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deegan, B. J., Seldeen, K. L., McDonald, C. B., Bhat, V. & Farooq, A. Binding of the ERα nuclear receptor to DNA is coupled to proton uptake. Biochemistry 49, 5978–5988 (2010).

    CAS  PubMed  Google Scholar 

  29. Lundback, T., van Den Berg, S. & Hard, T. Sequence-specific DNA binding by the glucocorticoid receptor DNA-binding domain is linked to a salt-dependent histidine protonation. Biochemistry 39, 8909–8916 (2000).

    CAS  PubMed  Google Scholar 

  30. Blane, A. & Fanucchi, S. Effect of pH on the structure and DNA binding of the FOXP2 forkhead domain. Biochemistry 54, 4001–4007 (2015).

    CAS  PubMed  Google Scholar 

  31. Mikles, D. C. et al. pH modulates the binding of early growth response protein 1 transcription factor to DNA. FEBS J. 280, 3669–3684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tencer, A. H. et al. A unique pH-dependent recognition of methylated histone H3K4 by PPS and DIDO. Structure 25, 1530–1539.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rohani, N. et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 79, 1952–1966 (2019). The authors show that areas of acidosis are not restricted to hypoxic tumour regions, but overlie highly proliferative and invasive zones at the tumour–stroma interface, reaffirming that acidosis is a distinct feature of the chemical microenvironment.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013).

    CAS  PubMed  Google Scholar 

  35. Chano, T. et al. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells. Am. J. Cancer Res. 6, 859–875 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Larionova, T. D. et al. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat. Cell Biol. 24, 1541–1557 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Robertson, I. M. et al. Elucidation of isoform-dependent pH sensitivity of troponin I by NMR spectroscopy. J. Biol. Chem. 287, 4996–5007 (2012).

    CAS  PubMed  Google Scholar 

  38. Halestrap, A. P. & Wilson, M. C. The monocarboxylate transporter family — role and regulation. IUBMB Life 64, 109–119 (2012).

    CAS  PubMed  Google Scholar 

  39. Payen, V. L., Mina, E., Van Hee, V. F., Porporato, P. E. & Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab. 33, 48–66 (2020).

    CAS  PubMed  Google Scholar 

  40. Benjamin, D. et al. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep. 25, 3047–3058.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Halestrap, A. P. The SLC16 gene family — structure, role and regulation in health and disease. Mol. Asp. Med. 34, 337–349 (2013).

    CAS  Google Scholar 

  42. Lee, S. K. et al. Distinguishing among HCO3, CO3=, and H+ as substrates of proteins that appear to be “bicarbonate” transporters. J. Am. Soc. Nephrol. 34, 40–54 (2023).

    PubMed  Google Scholar 

  43. Roos, A. & Boron, W. F. Intracellular pH. Physiol. Rev. 61, 296–434 (1981).

    CAS  PubMed  Google Scholar 

  44. Hulikova, A., Aveyard, N., Harris, A. L., Vaughan-Jones, R. D. & Swietach, P. Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure. J. Biol. Chem. 289, 25418–25430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Supuran, C. T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168–181 (2008).

    CAS  PubMed  Google Scholar 

  46. Michl, J. et al. Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep. 42, 112601 (2023).

    CAS  PubMed  Google Scholar 

  47. Boron, W. F. Regulation of intracellular pH. Adv. Physiol. Educ. 28, 160–179 (2004).

    PubMed  Google Scholar 

  48. Benitez, M., Tatapudy, S., Liu, Y., Barber, D. L. & Nystul, T. G. Drosophila anion exchanger 2 is required for proper ovary development and oogenesis. Dev. Biol. 452, 127–133 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Street, D., Bangsbo, J. & Juel, C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol. 537, 993–9998 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedersen, S. F., Novak, I., Alves, F., Schwab, A. & Pardo, L. A. Alternating pH landscapes shape epithelial cancer initiation and progression: focus on pancreatic cancer. Bioessays 39, 1600253 (2017).

    Google Scholar 

  51. Wu, H. et al. T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat. Commun. 11, 4113 (2020). The authors show that acidic microenvironments that are physiologically occurring in the T cell zones of lymph nodes but also in the tumour microenvironment suppress effector functions of T lymphocytes, contributing to tumour immune evasion.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boedtkjer, E. & Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82, 103–126 (2020).

    CAS  PubMed  Google Scholar 

  53. Swietach, P. What is pH regulation, and why do cancer cells need it? Cancer Metastasis Rev. 38, 5–15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Man, C. H. et al. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood 139, 502–522 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, Y. H., Hu, C. M., Hsu, Y. S. & Lee, W. H. Interplays of glucose metabolism and KRAS mutation in pancreatic ductal adenocarcinoma. Cell Death Dis. 13, 817 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555–1559 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sloth, R. A. et al. Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br. J. Cancer 127, 1226–1238 (2022). The authors demonstrate that loss of the HCO3-sensing protein RPTPγ facilitates pre-malignant changes in breast tissue by elevating intracellular pH, which is attributed to an activation of net acid extrusion, principally through NBCn1.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Anemone, A., Consolino, L., Arena, F., Capozza, M. & Longo, D. L. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. 38, 25–49 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boyd, P. S. et al. Mapping intracellular pH in tumors using amide and guanidyl CEST-MRI at 9.4 T. Magn. Reson. Med. 87, 2436–2452 (2022).

    CAS  PubMed  Google Scholar 

  60. Korzowski, A. et al. Volumetric mapping of intra- and extracellular pH in the human brain using 31P MRSI at 7T. Magn. Reson. Med. 84, 1707–1723 (2020).

    CAS  PubMed  Google Scholar 

  61. Huang, G. et al. PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers. Nat. Biomed. Eng. 4, 314–324 (2020).

    CAS  PubMed  Google Scholar 

  62. Rottenberg, D. A., Ginos, J. Z., Kearfott, K. J., Junck, L. & Bigner, D. D. In vivo measurement of regional brain tissue pH using positron emission tomography. Ann. Neurol. 15, S98–S102 (1984).

    PubMed  Google Scholar 

  63. Toft, N. J. et al. Acid–base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. eLife 10, e68447 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jardim-Perassi, B. V. et al. Intraperitoneal delivery of iopamidol to assess extracellular pH of orthotopic pancreatic tumor model by CEST-MRI. Contrast Media Mol. Imaging 2023, 1944970 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Kallinowski, F. et al. Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 49, 3759–3764 (1989).

    CAS  PubMed  Google Scholar 

  66. Swietach, P., Vaughan-Jones, R. D. & Harris, A. L. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 26, 299–310 (2007).

    CAS  PubMed  Google Scholar 

  67. Chiche, J. et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69, 358–368 (2009).

    CAS  PubMed  Google Scholar 

  68. Svastova, E. et al. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 577, 439–445 (2004).

    CAS  PubMed  Google Scholar 

  69. Chiche, J. et al. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int. J. Cancer 130, 1511–1520 (2012). A proof-of-concept study demonstrating that disruption to acid handling causes changes in tumour intracellular and extracellular pH in vivo and that interventions aimed at reducing intracellular pH attenuate tumour growth, in line with in vitro data.

    CAS  PubMed  Google Scholar 

  70. Lee, S. et al. Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res. 25, 46 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Swietach, P., Patiar, S., Supuran, C. T., Harris, A. L. & Vaughan-Jones, R. D. The role of carbonic anhydrase 9 in regulating extracellular and intracellular pH in three-dimensional tumor cell growths. J. Biol. Chem. 284, 20299–20310 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sterling, D., Reithmeier, R. A. & Casey, J. R. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J. Biol. Chem. 276, 47886–47894 (2001).

    CAS  PubMed  Google Scholar 

  73. Forero-Quintero, L. S. et al. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J. Biol. Chem. 294, 593–607 (2019).

    CAS  PubMed  Google Scholar 

  74. Al-Samir, S. et al. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1. J. Physiol. 591, 4963–4982 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Koeppen, B. M. The kidney and acid–base regulation. Adv. Physiol. Educ. 33, 275–281 (2009).

    PubMed  Google Scholar 

  78. Blaszczak, W., Williams, H. & Swietach, P. Autoregulation of H+/lactate efflux prevents monocarboxylate transport (MCT) inhibitors from reducing glycolytic lactic acid production. Br. J. Cancer 127, 1365–1377 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hulikova, A., Vaughan-Jones, R. D. & Swietach, P. Dual role of CO2/HCO3 buffer in the regulation of intracellular pH of three-dimensional tumor growths. J. Biol. Chem. 286, 13815–13826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonde, L. & Boedtkjer, E. Extracellular acidosis and very low [Na+] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol. 221, 129–141 (2017).

    CAS  Google Scholar 

  81. Lee, S. et al. Na+,HCO3-cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane. Pflug. Arch. 467, 367–377 (2015).

    CAS  Google Scholar 

  82. Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 5, 786–795 (2005).

    CAS  PubMed  Google Scholar 

  83. Lee, S. et al. Disrupting Na+, HCO3-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene 35, 2112–2122 (2016).

    CAS  PubMed  Google Scholar 

  84. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  85. Morita, T., Nagaki, T., Fukuda, I. & Okumura, K. Clastogenicity of low pH to various cultured mammalian cells. Mutat. Res. 268, 297–305 (1992).

    CAS  PubMed  Google Scholar 

  86. Jayanth, V. R., Bayne, M. T. & Varnes, M. E. Effects of extracellular and intracellular pH on repair of potentially lethal damage, chromosome aberrations and DNA double-strand breaks in irradiated plateau-phase A549 cells. Radiat. Res. 139, 152–162 (1994).

    CAS  PubMed  Google Scholar 

  87. Massonneau, J. et al. Suboptimal extracellular pH values alter DNA damage response to induced double-strand breaks. FEBS Open Bio 8, 416–425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xiao, H., Li, T. K., Yang, J. M. & Liu, L. F. Acidic pH induces topoisomerase II-mediated DNA damage. Proc. Natl Acad. Sci. USA 100, 5205–5210 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Axelrad, J. E., Lichtiger, S. & Yajnik, V. Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 22, 4794–4801 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ritter, M. et al. Activation of Na+/H+-exchanger by transforming Ha-ras requires stimulated cellular calcium influx and is associated with rearrangement of the actin cytoskeleton. Eur. J. Cell Biol. 72, 222–228 (1997).

    CAS  PubMed  Google Scholar 

  91. Reshkin, S. J. et al. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 14, 2185–2197 (2000).

    CAS  PubMed  Google Scholar 

  92. Gorbatenko, A. et al. ErbB2 upregulates the Na+,HCO3-cotransporter NBCn1/SLC4A7 in human breast cancer cells via Akt, ERK, Src, and Kruppel-like factor 4. FASEB J. 28, 350–363 (2014).

    CAS  PubMed  Google Scholar 

  93. Lauritzen, G. et al. NBCn1 and NHE1 expression and activity in ΔNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Exp. Cell Res. 316, 2538–2553 (2010).

    CAS  PubMed  Google Scholar 

  94. Grillo-Hill, B. K., Choi, C., Jimenez-Vidal, M. & Barber, D. L. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. eLife 4, e03270 (2015). Using Drosophila melanogaster, the authors show that overexpression of the D. melanogaster NHE1 homologue Dnhe2 is sufficient to increase intracellular pH and induce dysplasia and proliferation, and that Dnhe2 is essential during oncogene-induced transformation, therefore representing an opportunity for synthetic lethality.

    PubMed  PubMed Central  Google Scholar 

  95. Lloyd, M. C. et al. Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, S. et al. Na+,HCO3-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 37, 5569–5584 (2018).

    CAS  PubMed  Google Scholar 

  97. Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. White, K. A., Kisor, K. & Barber, D. L. Intracellular pH dynamics and charge-changing somatic mutations in cancer. Cancer Metastasis Rev. 38, 17–24 (2019).

    CAS  PubMed  Google Scholar 

  99. White, K. A. et al. Cancer-associated arginine-to-histidine mutations confer a gain in pH sensing to mutant proteins. Sci. Signal. 10, eaam9931 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Anoosha, P., Sakthivel, R. & Michael Gromiha, M. Exploring preferred amino acid mutations in cancer genes: applications to identify potential drug targets. Biochim. Biophys. Acta 1862, 155–165 (2016).

    CAS  PubMed  Google Scholar 

  101. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004). This review article presents the original hypothesis that cancer cells switch from respiration to fermentation because of the high yield of acid per ATP produced glycolytically, leading to increased acid production, which then acts as a selection pressure favouring acid-resistant phenotypes.

    CAS  PubMed  Google Scholar 

  102. Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer 12, 487–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B. & Gillies, R. J. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 66, 5216–5223 (2006).

    CAS  PubMed  Google Scholar 

  104. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    CAS  PubMed  Google Scholar 

  105. Corbet, C. et al. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 24, 311–323 (2016).

    CAS  PubMed  Google Scholar 

  106. Pillai, S. et al. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep. 39, 110796 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yao, J. et al. Cancer cell acid adaptation gene expression response is correlated to tumor-specific tissue expression profiles and patient survival. Cancers 12, 2183 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Corbet, C. et al. TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat. Commun. 11, 454 (2020). This work addresses the association between acidosis and metabolic reprogramming in cancer, demonstrating that acidosis-elicited autocrine signalling by TGFβ2 favours lipid droplet formation in cancer cells as a preamble to aggressive behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. LaMonte, G. et al. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer Metab. 1, 23 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Michl, J. et al. CRISPR–Cas9 screen identifies oxidative phosphorylation as essential for cancer cell survival at low extracellular pH. Cell Rep. 38, 110493 (2022). The authors perform a genome-wide CRISPR–Cas9 screen and identify genes involved in mitochondrial respiration, such as the gene encoding complex I subunit NDUFS1, critical for survival in an acidic milieu.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Corbet, C. et al. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 74, 5507–5519 (2014).

    CAS  PubMed  Google Scholar 

  112. Rolver, M. G. et al. Chronic acidosis rewires cancer cell metabolism through PPARα signaling. Int. J. Cancer 152, 1668–1684 (2023). The authors adapt cancer cell lines of various origins to acidosis and find that lipid β-oxidation and PPARα activity are raised in acid-resistant cells, thus identifying PPARα to convey resistance to low extracellular pH.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Webb, B. A. et al. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 523, 111–114 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wilde, B. R., Ye, Z., Lim, T. Y. & Ayer, D. E. Cellular acidosis triggers human MondoA transcriptional activity by driving mitochondrial ATP production. eLife 8, e40199 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Kamp, F. & Hamilton, J. A. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc. Natl Acad. Sci. USA 89, 11367–11370 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Walton, Z. E. et al. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell 174, 72–87.e32 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Glunde, K. et al. Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5, 533–545 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, Y. et al. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 72, 304–314 (2012).

    CAS  PubMed  Google Scholar 

  120. Bajzikova, M. et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 29, 399–416.e10 (2019).

    CAS  PubMed  Google Scholar 

  121. Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32, 341–352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727.e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, Z. et al. Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nat. Metab. 4, 711–723 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sin, W. C. et al. G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers. Oncogene 23, 6299–6303 (2004).

    CAS  PubMed  Google Scholar 

  125. Andersen, A. P. et al. The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int. J. Cancer 142, 2529–2542 (2018).

    CAS  PubMed  Google Scholar 

  126. Boedtkjer, E. et al. Contribution of Na+,HCO3-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7) 4. Int. J. Cancer 132, 1288–1299 (2013).

    CAS  PubMed  Google Scholar 

  127. Cappellesso, F. et al. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat. Cancer 3, 1464–1483 (2022). The authors demonstrate that inhibition of NBCe1 reduces the degree of extracellular acidosis in pancreatic ductal adenocarcinomas, thereby rendering the tumour microenvironment conducive to immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Czaplinska, D. et al. Crosstalk between tumor acidosis, p53, and extracellular matrix regulates pancreatic cancer aggressiveness. Int. J. Cancer 152, 1210–1225 (2023).

    CAS  PubMed  Google Scholar 

  129. Stigliani, A. et al. Adaptation to an acid microenvironment promotes pancreatic cancer organoid growth and drug resistance in a p53-dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2023.01.02.522472 (2023).

    Article  Google Scholar 

  130. Moellering, R. E. et al. Acid treatment of melanoma cells selects for invasive phenotypes. Clin. Exp. Metastasis 25, 411–425 (2008).

    CAS  PubMed  Google Scholar 

  131. Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu, S. et al. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway. Cell Death Dis. 8, e2806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hofschroer, V. et al. Extracellular protonation modulates cell–cell interaction mechanics and tissue invasion in human melanoma cells. Sci. Rep. 7, 42369 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Shin, H. J. et al. Carbonic anhydrase IX (CA9) modulates tumor-associated cell migration and invasion. J. Cell Sci. 124, 1077–1087 (2011).

    CAS  PubMed  Google Scholar 

  135. Busco, G. et al. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J. 24, 3903–3915 (2010).

    CAS  PubMed  Google Scholar 

  136. Comito, G. et al. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene 38, 3681–3695 (2019).

    CAS  PubMed  Google Scholar 

  137. Certo, M., Tsai, C. H., Pucino, V., Ho, P. C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    CAS  PubMed  Google Scholar 

  138. Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72, 2746–2756 (2012).

    CAS  PubMed  Google Scholar 

  139. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  140. Davern, M. et al. Acidosis significantly alters immune checkpoint expression profiles of T cells from oesophageal adenocarcinoma patients. Cancer Immunol. Immunother. 72, 55–71 (2023).

    CAS  PubMed  Google Scholar 

  141. El-Kenawi, A. et al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br. J. Cancer 121, 556–566 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bohn, T. et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19, 1319–1329 (2018). This study shows that tumour acidosis mediates melanoma immune evasion by inducing the transcriptional repressor ICER in macrophages, which converts these towards a non-inflammatory phenotype.

    CAS  PubMed  Google Scholar 

  143. Kwon, Y.-J. et al. The acidic tumor microenvironment enhances PD-L1 expression via activation of STAT3 in MDA-MB-231 breast cancer cells. BMC Cancer 22, 852 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).

    CAS  PubMed  Google Scholar 

  145. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  146. Cheng, H. et al. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nat. Metab. 5, 314–330 (2023). This study shows how low extracellular pH impairs methionine metabolism, which alters histone methylation and preserves a stem-like memory state of T cells, thus revealing the mechanism of how tumour acidosis suppresses T cell effector functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Erra Diaz, F. et al. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep. 31, 107613 (2020).

    CAS  PubMed  Google Scholar 

  148. Vermeulen, M. N. et al. Acidosis improves uptake of antigens and MHC class I-restricted presentation by dendritic cells1. J. Immunol. 172, 3196–3204 (2004).

    CAS  PubMed  Google Scholar 

  149. Tong, J. et al. Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J. Immunol. 186, 3686–3692 (2011).

    CAS  PubMed  Google Scholar 

  150. Hulikova, A. et al. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. Proc. Natl Acad. Sci. USA 113, E5344–E5353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Fiaschi, T. et al. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle 12, 1791–1801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699–709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Jordan, B. F. & Sonveaux, P. Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front. Pharmacol. 3, 94 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Froelunde, A. S. et al. Murine breast cancer feed arteries are thin-walled with reduced α1A-adrenoceptor expression and attenuated sympathetic vasocontraction. Breast Cancer Res. 20, 20 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. D’Arcangelo, D. et al. Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ. Res. 86, 312–318 (2000).

    PubMed  Google Scholar 

  156. Burbridge, M. F., West, D. C., Atassi, G. & Tucker, G. C. The effect of extracellular pH on angiogenesis in vitro. Angiogenesis 3, 281–288 (1999).

    CAS  PubMed  Google Scholar 

  157. Dong, L., Krewson, E. A. & Yang, L. V. Acidosis activates endoplasmic reticulum stress pathways through GPR4 in human vascular endothelial cells. Int. J. Mol. Sci. 18, 278 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Annan, D. A. et al. Carbonic anhydrase 2 (CAII) supports tumor blood endothelial cell survival under lactic acidosis in the tumor microenvironment. Cell Commun. Signal. 17, 169 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fukumura, D. et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61, 6020–6024 (2001).

    CAS  PubMed  Google Scholar 

  161. Pedersen, A. K., Mendes Lopes de Melo, J., Morup, N., Tritsaris, K. & Pedersen, S. F. Tumor microenvironment conditions alter Akt and Na+/H+ exchanger NHE1 expression in endothelial cells more than hypoxia alone: implications for endothelial cell function in cancer. BMC Cancer 17, 542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Dulak, J. et al. Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 659–666 (2000).

    CAS  PubMed  Google Scholar 

  163. Aalkjaer, C. & Poston, L. Effects of pH on vascular tension: which are the important mechanisms? J. Vasc. Res. 33, 347–359 (1996).

    CAS  PubMed  Google Scholar 

  164. Gaynullina, D. K., Tarasova, O. S., Shvetsova, A. A., Borzykh, A. A. & Schubert, R. The effects of acidosis on eNOS in the systemic vasculature: a focus on early postnatal ontogenesis. Int. J. Mol. Sci. 23, 5987 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Boedtkjer, E. et al. Disruption of Na+,HCO3 cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice. Circulation 124, 1819–1829 (2011).

    CAS  PubMed  Google Scholar 

  166. Boedtkjer, E., Damkier, H. H. & Aalkjaer, C. NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pH(i) in the vascular wall. J. Physiol. 590, 1895–1906 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Morbidelli, L., Donnini, S. & Ziche, M. Role of nitric oxide in the modulation of angiogenesis. Curr. Pharm. Des. 9, 521–530 (2003).

    CAS  PubMed  Google Scholar 

  168. Voss, N. C. S., Kold-Petersen, H. & Boedtkjer, E. Enhanced nitric oxide signaling amplifies vasorelaxation of human colon cancer feed arteries. Am. J. Physiol. Heart Circ. Physiol. 316, H245–H254 (2019).

    CAS  PubMed  Google Scholar 

  169. Dewhirst, M. W., Secomb, T. W., Ong, E. T., Hsu, R. & Gross, J. F. Determination of local oxygen consumption rates in tumors. Cancer Res. 54, 3333–3336 (1994).

    CAS  PubMed  Google Scholar 

  170. Vaupel, P., Hockel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007).

    CAS  PubMed  Google Scholar 

  171. Voegtlin, C. & Kahler, H. The estimation of the hydrogen-ion concentration of the tissues in living animals. Science 75, 362–364 (1932).

    CAS  PubMed  Google Scholar 

  172. Wike-Hooley, J. L., Haveman, J. & Reinhold, H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 2, 343–366 (1984).

    CAS  PubMed  Google Scholar 

  173. Gillies, R. J., Liu, Z. & Bhujwalla, Z. 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am. J. Physiol. 267, C195–C203 (1994).

    CAS  PubMed  Google Scholar 

  174. Gil, S., Zaderenzo, P., Cruz, F., Cerdan, S. & Ballesteros, P. Imidazol-1-ylalkanoic acids as extrinsic 1H NMR probes for the determination of intracellular pH, extracellular pH and cell volume. Bioorg. Med. Chem. 2, 305–314 (1994).

    CAS  PubMed  Google Scholar 

  175. Newell, K., Franchi, A., Pouyssegur, J. & Tannock, I. Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc. Natl Acad. Sci. USA 90, 1127–1131 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Beard, D. A. Comments on point:counterpoint: muscle lactate and H+ production do/do not have a 1:1 association in skeletal muscle. Calculations of Robergs support the view of Vinnakota and Kushmerick. J. Appl. Physiol. 110, 1493 (2011).

    PubMed  Google Scholar 

  177. Hochachka, P. W. & Mommsen, T. P. Protons and anaerobiosis. Science 219, 1391–1397 (1983).

    CAS  PubMed  Google Scholar 

  178. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Mekhail, K., Gunaratnam, L., Bonicalzi, M. E. & Lee, S. HIF activation by pH-dependent nucleolar sequestration of VHL. Nat. Cell Biol. 6, 642–647 (2004).

    CAS  PubMed  Google Scholar 

  180. Filatova, A. et al. Acidosis acts through HSP90 in a PHD/VHL-independent manner to promote HIF function and stem cell maintenance in glioma. Cancer Res. 76, 5845–5856 (2016).

    CAS  PubMed  Google Scholar 

  181. Raghunand, N. & Gillies, R. J. pH and drug resistance in tumors. Drug Resist. Updat. 3, 39–47 (2000).

    CAS  PubMed  Google Scholar 

  182. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

    CAS  PubMed  Google Scholar 

  183. Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 22, 476–495 (2023).

    CAS  PubMed  Google Scholar 

  184. Robey, I. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ibrahim-Hashim, A. et al. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med. 6, 1720–1729 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Voss, N. C. S. et al. Targeting the acidic tumor microenvironment: unexpected pro-neoplastic effects of oral NaHCO3 therapy in murine breast tissue. Cancers 12, 891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01350583 (2013).

  188. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01846429 (2015).

  189. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01198821 (2017).

  190. Gillies, R. J., Ibrahim-Hashim, A., Ordway, B. & Gatenby, R. A. Back to basic: trials and tribulations of alkalizing agents in cancer. Front. Oncol. 12, 981718 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Dowlati, A., Belani, C. P., Simon, G. R., Chao, H. & Piha-Paul, S. A. Phase I dose escalation study of immunoconjugate L-DOS47 in combination with pemetrexed/carboplatin in non-squamous non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 38, e21680 (2020).

    Google Scholar 

  192. Amith, S. R., Wilkinson, J. M., Baksh, S. & Fliegel, L. The Na+/H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget 6, 1262–1275 (2015).

    PubMed  Google Scholar 

  193. Muselaers, C. H. et al. Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur. Urol. 69, 767–770 (2016).

    CAS  PubMed  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT05046665 (2021).

  195. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00087022 (2018).

  196. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02002312 (2015).

  197. Mahoney, B. P., Raghunand, N., Baggett, B. & Gillies, R. J. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem. Pharmacol. 66, 1207–1218 (2003).

    CAS  PubMed  Google Scholar 

  198. Rolver, M. G., Elingaard-Larsen, L. O., Andersen, A. P., Counillon, L. & Pedersen, S. F. Pyrazine ring-based Na+/H+ exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1. Sci. Rep. 10, 5800 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Hjelmeland, A. B. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18, 829–840 (2011).

    CAS  PubMed  Google Scholar 

  200. Timmers, M. et al. A new class of tunable acid-sensitive linkers for native drug release based on the trityl protecting group. Bioconjug. Chem. 33, 1707–1715 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, Y. et al. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J. Hematol. Oncol. 16, 2 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Gaggero, S. et al. IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein. Sci. Immunol. 7, eade5686 (2022).

    CAS  PubMed  Google Scholar 

  203. Duan, W. et al. A pH ratiometrically responsive surface enhanced resonance Raman scattering probe for tumor acidic margin delineation and image-guided surgery. Chem. Sci. 11, 4397–4402 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2016).

    PubMed  PubMed Central  Google Scholar 

  205. Voskuil, F. J. et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11, 3257 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Harris, R. J. et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 17, 1514–1524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    CAS  PubMed  Google Scholar 

  209. Imenez Silva, P. H., Camara, N. O. & Wagner, C. A. Role of proton-activated G protein-coupled receptors in pathophysiology. Am. J. Physiol. Cell Physiol. 323, C400–C414 (2022).

    PubMed  Google Scholar 

  210. Zhou, Y. et al. Role of receptor protein tyrosine phosphatase γ in sensing extracellular CO2 and HCO3. J. Am. Soc. Nephrol. 27, 2616–2621 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Boedtkjer, E., Hansen, K. B., Boedtkjer, D. M. B., Aalkjaer, C. & Boron, W. F. Extracellular HCO3 is sensed by mouse cerebral arteries: regulation of tone by receptor protein tyrosine phosphatase γ. J. Cereb. Blood Flow Metab. 36, 965–980 (2016).

    CAS  PubMed  Google Scholar 

  212. Carattino, M. D. & Montalbetti, N. Acid-sensing ion channels in sensory signaling. Am. J. Physiol. Ren. Physiol. 318, F531–F543 (2020).

    CAS  Google Scholar 

  213. Glitsch, M. Protons and Ca2+: ionic allies in tumor progression? Physiology 26, 252–265 (2011).

    CAS  PubMed  Google Scholar 

  214. Li, S., Sato, S., Yang, X., Preisig, P. A. & Alpern, R. J. Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J. Clin. Invest. 114, 1782–1789 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Rossetti, T., Jackvony, S., Buck, J. & Levin, L. R. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus 11, 20200034 (2021).

    PubMed  PubMed Central  Google Scholar 

  216. Michl, J., Park, K. C. & Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2, 144 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Liu, W. et al. Lactate regulates cell cycle by remodeling the anaphase promoting complex. Nature 616, 790–797 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Related work in the authors’ laboratories was supported by the European Research Council (SURVIVE 723997 to P.S.); the H2020 (H2020-MSCA-ITN-2018, 813834 to P.S. and S.F.P.); the Danish Cancer Society (R269-A15823 to S.F.P.; R269-A15761 to E.B.); the Independent Research Fund Denmark (0135-00139B and 0134-00218B to S.F.P.; 7025-00050B and 2034-00185B to E.B.); the Novo Nordisk Foundation (NNF21OC0069598 to S.F.P.; NNF18OC0053037 to E.B.); and the Aarhus University Research Foundation (AUFF-E-2021-9-18 to E.B.). The authors gratefully acknowledge valuable discussions with their colleagues during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Pawel Swietach, Ebbe Boedtkjer or Stine Falsig Pedersen.

Ethics declarations

Competing interests

E.B. is inventor on a patent addressing NBCn1 inhibition in cancer (EP-3271402). S.F.P. is a co-founder of SOLID Therapeutics. P.S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Olivier Feron, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Buffer therapy

An intervention aimed at raising the extracellular buffering capacity of tumours, achieved by delivering an exogenous buffer (such as Tris) or raising the level of a physiological buffer (notably CO2/HCO3).

Carbonic anhydrases

A widely expressed family of enzymes that catalyse CO2 hydration and its reverse reaction, with catalytic sites that can be intracellular or extracellular.

Clastogenic effect

A mutagenic action that causes structural changes in DNA, resulting in the deletion, insertion or rearrangement of entire segments of a chromosome.

Fermentative metabolism

The glycolytic processing of carbohydrates that ends in the production and excretion of lactate and H+, yielding two molecules of ATP per glucose.

H+ equivalent

A species that is in chemical equilibrium with H+, such as CO2, lactic acid, HCO3, CO32– and OH, the membrane transport of which produces a change in pH in the adjoining aqueous compartments.

Ion trapping

A phenomenon in which weakly basic drugs become protonated in acidic compartments and less permeable across membranes, resulting in the accumulation of the drug.

Lactylation

A post-translational modification in which lactate undergoes a condensation reaction with an amino acid residue such as lysine on proteins such as histones.

Matrisome

The complete set of extracellular matrix proteins that comprises about a thousand proteins in mammals and is usually divided into the core matrisome, including collagens, glycoproteins and proteoglycans, and the matrisome-associated proteins, such as regulators and secreted factors.

Metabolon

A spatial arrangement of enzymes or transporters representing sequential steps in a more complex biological pathway that, in the case of pHi regulation, has been suggested to involve carbonic anhydrases and H+ or H+-equivalent transporters.

Net acid extrusion

A membrane transport process that results in an increase in intracellular pH, arising from the export of H+ or the import of HCO3 or similar H+ equivalents.

Oxidative phosphorylation

(OXPHOS). The mitochondrial process through which oxidation of substrates produces CO2 and an H+ gradient across the inner mitochondrial membrane, driving ATP production and yielding up to 38 molecules of ATP per glucose.

Oxygen partial pressure

(pO2). A measure of the concentration of oxygen dissolved in a solution, related to the pressure that oxygen gas exerts.

Paraptosis-like cell death

A type of programmed cell death distinct from apoptosis and necrosis, characterized by vacuolation and damage to mitochondria and endoplasmic reticulum.

pH

A dimensionless logarithmic scale that describes the acidity or basicity of a solution, where 7.0 denotes a neutral solution, below 7 denotes an acidic solution and above 7 denotes an alkaline solution.

pH buffering

A chemical reaction involving a weak acid and its conjugate base (in equilibrium with H+) that reduces — but does not eliminate — a pH change in response to the addition of acids or bases, for example, from a metabolic or membrane transport source.

pHe–pHi relationship

A graphical representation of the effect that changes in pHe have on steady-state pHi, from which sensitivity can be inferred by measuring the slope.

pK a

The negative logarithm of the acid dissociation constant (Ka = [A] × [H+]/[HA]), which is used to categorize substances as weakly acidic (3 < pKa < 7), strongly acidic (pKa < 3), weakly basic (7 < pKa < 11) or strongly basic (pKa > 11).

Protonation

The reversible binding of H+ to a chemical moiety, such as a carboxylate, amine or imidazole, that in the case of proteins can affect structure and function.

Secondary active transport

A form of membrane transport that leads to uphill movement of a solute and is energized by a coupled downhill movement of another solute, typically sodium ions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swietach, P., Boedtkjer, E. & Pedersen, S.F. How protons pave the way to aggressive cancers. Nat Rev Cancer 23, 825–841 (2023). https://doi.org/10.1038/s41568-023-00628-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00628-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer