Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma

Abstract

Treatment selections are very limited for patients with advanced nasopharyngeal carcinoma (NPC) experiencing disease progression. Uncovering mechanisms underlying NPC progression is crucial for the development of novel treatments. Here we show that N7-methylguanosine (m7G) tRNA modification enzyme METTL1 and its partner WDR4 are significantly elevated in NPC and are associated with poor prognosis. Loss-of-function and gain-of-function assays demonstrated that METTL1/WDR4 promotes NPC growth and metastasis in vitro and in vivo. Mechanistically, ARNT was identified as an upstream transcription factor regulating METTL1 expression in NPC. METTL1 depletion resulted in decreased m7G tRNA modification and expression, which led to impaired codon recognition during mRNA translation, therefore reducing the translation efficiencies of mRNAs with higher m7G codons. METTL1 upregulated the WNT/β-catenin signaling pathway and promoted NPC cell epithelial-mesenchymal transition (EMT) and chemoresistance to cisplatin and docetaxel in vitro and in vivo. Overexpression of WNT3A bypassed the requirement of METTL1 for EMT and chemoresistance. This work uncovers novel insights into tRNA modification-mediated mRNA translation regulation and highlights the critical function of tRNA modification in cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: METTL1 is upregulated in NPC and associated with poor prognosis.
Fig. 2: Knockdown of METTL1 inhibit tumorigenesis in vitro and in vivo.
Fig. 3: METTL1 promotes NPC progression through its catalytic activity.
Fig. 4: ARNT regulates METTL1 expression.
Fig. 5: METTL1 regulates m7G tRNA methylome and global mRNA translation through codon recognition.
Fig. 6: Overexpressing WNT3A in METTL1 knockout cells promoted NPC progression.
Fig. 7: METTL1 promotes NPC cells EMT.
Fig. 8: METTL1 promotes chemoresistance of NPC cells to cisplatin and docetaxel in vitro and in vivo.

Similar content being viewed by others

Data and code availability

The previously published Microarray data that were re-analyzed here are available under the accession code GEO12452 and GEO103611. The chemicals and commercial kits used in this study were shown in Table S7. The polyribosome-RNA-seq, Ribo-seq and m7G tRNA TRAC-seq data generated in this study are available at NCBI GEO DataSet (GSE169589). Software and algorithms employed in this study were presented in Supplementary Table S8.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Wu LR, Liu YT, Jiang N, Fan YX, Wen J, Huang SF, et al. Ten-year survival outcomes for patients with nasopharyngeal carcinoma receiving intensity-modulated radiotherapy: An analysis of 614 patients from a single center. Oral Oncol. 2017;69:26–32.

    Article  PubMed  Google Scholar 

  3. Mao YP, Xie FY, Liu LZ, Sun Y, Li L, Tang LL, et al. Re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2009;73:1326–34.

    Article  PubMed  Google Scholar 

  4. Pan JJ, Ng WT, Zong JF, Chan LL, O’Sullivan B, Lin SJ, et al. Proposal for the 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer 2016;122:546–58.

    Article  PubMed  Google Scholar 

  5. Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science 2018;361:1346–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han X, Wang M, Zhao YL, Yang Y, Yang YG. RNA methylations in human cancers. Semin Cancer Biol. 2020;18:S1044-579X(20)30241-8.

    Google Scholar 

  7. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nuclic Acids Res. 2018;46:D303–D7.

    Article  CAS  Google Scholar 

  8. Boccaletto P, Magnus M, Almeida C, Zyla A, Astha A, Pluta R, et al. RNArchitecture: A database and a classification system of RNA families, with a focus on structural information. Nuclic Acids Res. 2018;46:D202–D5.

    CAS  Google Scholar 

  9. Pinello N, Sun S, Wong JJ. Aberrant expression of enzymes regulating m(6)A mRNA methylation: Implication in cancer. Cancer Biol Med. 2018;15:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huo FC, Zhu ZM, Pei DS. N(6) -methyladenosine (m(6) A) RNA modification in human cancer. Cell Prolif. 2020;53:e12921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Harada BT, He C. Regulation of Gene Expression by N(6)-methyladenosine in Cancer. Trends Cell Biol. 2019;29:487–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schimmel P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol. 2018;19:45–58.

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016;167:1897.

    Article  CAS  PubMed  Google Scholar 

  15. Chou HJ, Donnard E, Gustafsson HT, Garber M, Rando OJ. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. Mol Cell. 2017;68:978–92 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med. 2014;20:306–14.

    Article  CAS  PubMed  Google Scholar 

  17. Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 2015;16:98–112.

    Article  CAS  PubMed  Google Scholar 

  18. Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-Mediated m(7)G tRNA Methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71:244–55 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 2002;8:1253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trimouille A, Lasseaux E, Barat P, Deiller C, Drunat S, Rooryck C, et al. Further delineation of the phenotype caused by biallelic variants in the WDR4 gene. Clin Genet. 2018;93:374–7.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Gao Y, Yang L, Wu B, Dong X, Liu B, et al. Speech and language delay in a patient with WDR4 mutations. Eur J Med Genet. 2018;61:468–72.

    Article  PubMed  Google Scholar 

  22. Shaheen R, Abdel-Salam GM, Guy MP, Alomar R, Abdel-Hamid MS, Afifi HH, et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol. 2015;16:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81:3339–55.

    Article  CAS  PubMed  Google Scholar 

  24. Ma J, Han H, Huang Y, Yang C, Zheng S, Cai T, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29:3422–35.

    Article  CAS  PubMed  Google Scholar 

  25. Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81:3323–38.

    Article  CAS  PubMed  Google Scholar 

  26. Mao YP, Liang SB, Liu LZ, Chen Y, Sun Y, Tang LL, et al. The N staging system in nasopharyngeal carcinoma with radiation therapy oncology group guidelines for lymph node levels based on magnetic resonance imaging. Clin Cancer Res. 2008;14:7497–503.

    Article  CAS  PubMed  Google Scholar 

  27. Terashima J, Sampei S, Iidzuka M, Ohsakama A, Tachikawa C, Satoh J, et al. VEGF expression is regulated by HIF-1alpha and ARNT in 3D KYSE-70, esophageal cancer cell spheroids. Cell Biol Int. 2016;40:1187–94.

    Article  CAS  PubMed  Google Scholar 

  28. Leick KM, Obeid JM, Bekiranov S, Slingluff CL Jr. Systems analysis of barrier molecule and ARNT-related gene expression regulation in melanoma. Oncoimmunology 2019;8:e1665978.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen G, Cai ZD, Lin ZY, Wang C, Liang YX, Han ZD, et al. ARNT-dependent CCR8 reprogrammed LDH isoform expression correlates with poor clinical outcomes of prostate cancer. Mol Carcinog. 2020;59:897–907.

    Article  CAS  PubMed  Google Scholar 

  30. Persson CU, von Stedingk K, Fredlund E, Bexell D, Pahlman S, Wigerup C, et al. ARNT-dependent HIF-2 transcriptional activity is not sufficient to regulate downstream target genes in neuroblastoma. Exp Cell Res. 2020;388:111845.

    Article  CAS  PubMed  Google Scholar 

  31. Lin S, Liu Q, Jiang YZ, Gregory RI. Nucleotide resolution profiling of m(7)G tRNA modification by TRAC-Seq. Nat Protoc. 2009;4:44–57.

    CAS  Google Scholar 

  32. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

  33. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001;411:349–54.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    Article  CAS  PubMed  Google Scholar 

  36. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.

    Article  CAS  PubMed  Google Scholar 

  37. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015;527:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015;527:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, et al. Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/beta-catenin signalling. Oncogene 2016;35:4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, et al. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun. 2017;8:14053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, Xie T, Zhong X, Jiang HL, Li R, Wang BY, et al. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/beta-catenin signaling pathway. Aging 2020;12:5423–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang P, He Q, Lei Y, Li Y, Wen X, Hong M, et al. m(6)A-mediated ZNF750 repression facilitates nasopharyngeal carcinoma progression. Cell Death Dis. 2018;9:1169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;14:857–71.e7.

    Article  CAS  Google Scholar 

  47. Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m(6)A methylation in oral squamous cell carcinoma. Mol Ther. 2020;28:2177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, et al. m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 2020;19:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song P, Feng L, Li J, Dai D, Zhu L, Wang C, et al. beta-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer. 2020;19:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018;28:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michaud J, Kudoh J, Berry A, Bonne-Tamir B, Lalioti MD, Rossier C, et al. Isolation and characterization of a human chromosome 21q22.3 gene (WDR4) and its mouse homologue that code for a WD-repeat protein. Genomics 2000;68:71–9.

    Article  CAS  PubMed  Google Scholar 

  52. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011;478:57–63.

    Article  CAS  PubMed  Google Scholar 

  53. Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:2020–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, et al. Defects in tRNA anticodon Loop 2’-O-Methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat. 2015;36:1176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shaheen R, Han L, Faqeih E, Ewida N, Alobeid E, Phizicky EM, et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet. 2016;135:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian QH, Zhang MF, Zeng JS, Luo RG, Wen Y, Chen J, et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med. 2019;97:1535–45.

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Zhang Y, Chi Q, Wang Z, Sun B. Methyltransferase-like 1 (METTL1) served as a tumor suppressor in colon cancer by activating 7-methyguanosine (m7G) regulated let-7e miRNA/HMGA2 axis. Life Sci. 2020;249:117480.

    Article  CAS  PubMed  Google Scholar 

  58. Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet 2019;394:64–80.

    Article  PubMed  Google Scholar 

  59. Okamoto M, Fujiwara M, Hori M, Okada K, Yazama F, Konishi H, et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 2014;10:e1004639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38:e98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Peng H, Zhang J, Zhang PP, Chen L, Tang LL, Yang XJ, et al. ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2019;38:11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hong X, Liu N, Liang Y, He Q, Yang X, Lei Y, et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol Cancer. 2020;19:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    Article  PubMed  CAS  Google Scholar 

  64. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank professor Jun Ma (Department of Radiation Oncology, Sun Yat-sen University Cancer Center) for kindly donate the NPC cell lines and nasopharyngeal normal cell lines. We sincerely thank Drs. Weidong Ji and Shuibin Lin for kindly sharing us with the plasmids for METTL1 overexpression and depletion. We thank all the patients who generously donate the tissues. The work was funded by National Natural Science Foundation of China (82002981, 82003232 and 82003212) and China Postdoctoral Science Foundation (2020M673003).

Author information

Authors and Affiliations

Authors

Contributions

BC and HP designed the protocol of this study. BC, JZ, PY and HP performed in vitro and in vivo assays. WJ and YH were responsible for the clinical sample tissues. BC performed TRAC-seq and data was analyzed by H.P. Polysome associated mRNA-seq and data analysis were performed by HP and PY. All other data analysis was performed by LW, HP and PY. BC and HP wrote the paper and all authors revised and modified the final paper.

Corresponding authors

Correspondence to Lirong Wu or Hao Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Jiang, W., Huang, Y. et al. N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene 41, 2239–2253 (2022). https://doi.org/10.1038/s41388-022-02250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02250-9

This article is cited by

Search

Quick links