Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

METTL1/WDR4-mediated tRNA m7G modification and mRNA translation control promote oncogenesis and doxorubicin resistance

Abstract

Osteosarcoma is the most common bone tumor that leads to high mortality in adolescents and children. The tRNA N7-methylguanosine methyltransferase METTL1 is located in chromosome 12q14.1, a region that is frequently amplified in osteosarcoma patients, while its functions and underlying mechanisms in regulation of osteosarcoma remain unknown. Herein we show that METTL1 and WDR4 are overexpressed in osteosarcoma and associated with poor patient prognosis. Knockdown of METTL1 or WDR4 causes decreased tRNA m7G modification level and impairs osteosarcoma progression in vitro and in vivo. Conversely, METTL1/WDR4 overexpression promotes osteosarcoma proliferation, migration and invasion capacities. tRNA methylation and mRNA translation profiling indicate that METTL1/WDR4 modified tRNAs enhance translation of mRNAs with more m7G tRNA-decoded codons, including extracellular matrix (ECM) remodeling effectors, which facilitates osteosarcoma progression and chemoresistance to doxorubicin. Our study demonstrates METTL1/WDR4 mediated tRNA m7G modification plays crucial oncogenic functions to enhance osteosarcoma progression and chemoresistance to doxorubicin via alteration of oncogenic mRNA translation, suggesting METTL1 inhibition combined with chemotherapy is a promising strategy for treatment of osteosarcoma patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: METTL1 and WDR4 are elevated in osteosarcoma and correlated with poor prognosis.
Fig. 2: METTL1 knockdown inhibits osteosarcoma malignancy.
Fig. 3: WDR4 depletion recapitulates METTL1 mediated cell functional changes and METTL1 depletion hinders tumor growth in vivo.
Fig. 4: METTL1/WDR4 overexpression enhances proliferation, migration and invasion of osteosarcoma cell lines.
Fig. 5: METTL1 depletion causes reduced m7G modification, m7G-modified tRNAs and altered global mRNA translation.
Fig. 6: Overexpression of LOXL2 rescues proliferation, migration and invasion of METTL1/WDR4-depleted HOS cells.
Fig. 7: METTL1 depletion promotes osteosarcoma vulnerability to doxorubicin in vitro and in vivo.

Similar content being viewed by others

References

  1. Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18:609–24.

    Article  PubMed  Google Scholar 

  2. Liu Y, Huang N, Liao S, Rothzerg E, Yao F, Li Y, et al. Current research progress in targeted anti-angiogenesis therapy for osteosarcoma. Cell Prolif. 2021;54:e13102.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18:39–50.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang B, Zhang Y, Li R, Li J, Lu X, Zhang Y. The efficacy and safety comparison of first-line chemotherapeutic agents (high-dose methotrexate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: a network meta-analysis. J Orthop Surg Res. 2020;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017;17:11–20.

    Article  CAS  PubMed  Google Scholar 

  6. Mejia-Guerrero S, Quejada M, Gokgoz N, Gill M, Parkes RK, Wunder JS, et al. Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes Chromosomes Cancer. 2010;49:518–25.

    CAS  PubMed  Google Scholar 

  7. Gamberi G, Ragazzini P, Benassi MS, Ferrari C, Sollazzo MR, Molendini L, et al. Analysis of 12q13-15 genes in parosteal osteosarcoma. Clin Orthop Relat Res. 2000;377:195–204.

    Article  Google Scholar 

  8. Lin S, Liu Q, Lelyveld V, Choe J, Szostak J, Gregory RJMC. Mettl1/Wdr4-mediated mG tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71:244–55.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shaheen R, Abdel-Salam GM, Guy MP, Alomar R, Abdel-Hamid MS, Afifi HH, et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol. 2015;16:210.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han H, Yang C, Ma J, Zhang S, Zheng S, Ling R, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022;13:1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81:3339–55.e8.

    Article  CAS  PubMed  Google Scholar 

  12. Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81:3323–38.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu H, Zeng X, Ren X, Zhang Y, Huang M, Tan L, et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2022;0:1–13.

    Google Scholar 

  14. Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA. 2002;8:1253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin S, Liu Q, Jiang YZ, Gregory RI. Nucleotide resolution profiling of m(7)G tRNA modification by TRAC-Seq. Nat Protoc. 2019;14:3220–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, et al. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res. 2020;30:885–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen B, Xu LY, Li EM. LOXL2 in cancer: regulation, downstream effectors and novel roles. Biochim Biophys Acta Rev Cancer. 2020;1874:188435.

    Article  CAS  PubMed  Google Scholar 

  18. Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. Int J Mol Sci. 2020;21:6885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hwang HJ, Oh MS, Lee DW, Kuh HJ. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res: CR. 2019;38:258.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE, et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun. 2020;11:2416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pietilä EA, Gonzalez-Molina J, Moyano-Galceran L, Jamalzadeh S, Zhang K, Lehtinen L, et al. Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun. 2021;12:3904.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov A, Grayhack EJ, Phizicky EM. tRNA m7G methyltransferase Trm8p/Trm82p: evidence linking activity to a growth phenotype and implicating Trm82p in maintaining levels of active Trm8p. RNA. 2005;11:821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18:103.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang H, Weng H, Chen J. m(6)A Modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell. 2020;38:79–96.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol. 2021;22:375–92.

    Article  CAS  PubMed  Google Scholar 

  28. Endres L, Fasullo M, Rose R. tRNA modification and cancer: potential for therapeutic prevention and intervention. Future Med Chem. 2019;11:885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol. 2020;62:192–200.

    Article  CAS  PubMed  Google Scholar 

  30. Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res: CR. 2020;39:178.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strauss J, Figg WD. Using epigenetic therapy to overcome chemotherapy resistance. Anticancer Res. 2016;36:1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang T, Cui Y, Jin J, Guo J, Wang G, Yin X, et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 2013;41:4743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from National Key Research and Development Plan (2022YFA1105300, 2022YFE0138700), National Natural Science Foundation of China (81974435, 81922052), Natural Science Foundation of Guangdong Province (2019B151502011), Natural Science Foundation of Guangdong (2021A1515111032) and National Natural Science Foundation of China (82200954).

Author information

Authors and Affiliations

Authors

Contributions

ZW, PY, YZ designed experiments, acquired, analyzed and interpreted data and wrote the manuscript; JM, HH, WW, CY, SZ, SG, JW, and LL helped with some experiments and data interpretation; SL designed, supervised the study, and wrote manuscript.

Corresponding author

Correspondence to Shuibin Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, P., Zou, Y. et al. METTL1/WDR4-mediated tRNA m7G modification and mRNA translation control promote oncogenesis and doxorubicin resistance. Oncogene 42, 1900–1912 (2023). https://doi.org/10.1038/s41388-023-02695-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02695-6

Search

Quick links