Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptive control of synaptic plasticity integrates micro- and macroscopic network function

Abstract

Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity—defined broadly as the adaptive control of plasticity—forges connections across scales by governing what groups of synapses can and can’t learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson’s disease.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Common elements of synaptic plasticity.
Fig. 2: Fundamentals of Hebbian plasticity in neural networks.
Fig. 3: Neuromodulated plasticity and STDP kernels.
Fig. 4: An integrated view of dopamine modulated learning in the striatum.

References

  1. Sales EC, Heckman EL, Warren TL, Doe CQ. Regulation of subcellular dendritic synapse specificity by axon guidance cues. eLife. 2021;8:e43478. https://doi.org/10.7554/eLife.43478.

    Article  Google Scholar 

  2. Jamann N, Dannehl D, Lehmann N, Wagener R, Thielemann C, Schultz C. et al. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex. Nat Commun. 2021;12:23. https://doi.org/10.1038/s41467-020-20232-x.

    Article  CAS  PubMed  Google Scholar 

  3. Arikkath J. Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci. 2012;6:61. https://doi.org/10.3389/fncel.2012.00061.

    Article  PubMed  Google Scholar 

  4. Froemke R, Letzkus J, Kampa B, Hang G, Stuart G. Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front Synaptic Neurosci. 2010;2:29. https://doi.org/10.3389/fnsyn.2010.00029.

    Article  PubMed  Google Scholar 

  5. Iascone DM, Li Y, Sümbül U, Doron M, Chen H, Andreu V. et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron. 2020;106:566–78. https://doi.org/10.1016/j.neuron.2020.02.015.

    Article  CAS  Google Scholar 

  6. Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M. Structural homeostasis: Compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLoS Biol. 2008;6:e260. https://doi.org/10.1371/journal.pbio.0060260.

    Article  CAS  PubMed  Google Scholar 

  7. Knott GW, Quairiaux C, Genoud C, Welker E. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron. 2002;34:265–73. https://doi.org/10.1016/S0896-6273(02)00663-3.

    Article  CAS  PubMed  Google Scholar 

  8. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Experience leaves a lasting structural trace in cortical circuits. Nature. 2009;457:313–7. https://doi.org/10.1038/nature07487.

    Article  CAS  PubMed  Google Scholar 

  9. Kalantzis G, Shouval HZ. Structural plasticity can produce metaplasticity. PLoS ONE. 2009;4:e8062. https://doi.org/10.1371/journal.pone.0008062.

    Article  CAS  PubMed  Google Scholar 

  10. Wickens JR. Synaptic plasticity in the basal ganglia. Behavioural Brain Res. 2009;199:119–28. https://doi.org/10.1016/j.bbr.2008.10.030.

    Article  Google Scholar 

  11. Bourne JN, Harris KM. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus. 2011;21:354–73. https://doi.org/10.1002/hipo.20768.

    Article  CAS  PubMed  Google Scholar 

  12. O’Donnell C, Nolan MF, van Rossum MCW. Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci. 2011;31:16142–56. https://doi.org/10.1523/JNEUROSCI.2520-11.2011.

    Article  CAS  PubMed  Google Scholar 

  13. Yagishita S, Hayashi-Takagi A, Ellis Davies GCR, Urakubo H, Ishii S, Kasai H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science. 2014;345:1616–20. https://doi.org/10.1126/science.1255514.

    Article  CAS  PubMed  Google Scholar 

  14. Humble J, Hiratsuka K, Kasai H, Toyoizumi T. Intrinsic spine dynamics are critical for recurrent network learning in models with and without autism spectrum disorder. Front Computational Neurosci. 2019;13:38. https://doi.org/10.3389/fncom.2019.00038.

    Article  Google Scholar 

  15. Rudy J W. The neurobiology of learning and memory. 2nd ed. Sinauer Associates; Sunderland, Massachusetts; 2021.

  16. Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH. Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLOS Computational Biol. 2006;2:e119. https://doi.org/10.1371/journal.pcbi.0020119.

    Article  CAS  Google Scholar 

  17. Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 2012;13:169–82. https://doi.org/10.1038/nrn3192.

    Article  CAS  PubMed  Google Scholar 

  18. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: The last 25 years. Neuron. 2013;80:704–17. https://doi.org/10.1016/j.neuron.2013.10.025.

    Article  CAS  PubMed  Google Scholar 

  19. Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT. A unified computational model for cortical post-synaptic plasticity. eLife. 2020;9:e55714. https://doi.org/10.7554/eLife.55714.

    Article  PubMed  Google Scholar 

  20. Purkey AM, Dell’Acqua ML. Phosphorylation-dependent regulation of Ca2+-permeable AMPA receptors during hippocampal synaptic plasticity. Front Synaptic Neurosci. 2020;12:8. https://doi.org/10.3389/fnsyn.2020.00008.

    Article  CAS  PubMed  Google Scholar 

  21. Wolf M, Tseng K-Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci. 2012;5:72. https://doi.org/10.3389/fnmol.2012.00072.

    Article  CAS  PubMed  Google Scholar 

  22. Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98:466–81. https://doi.org/10.1016/j.neuron.2018.03.017.

    Article  CAS  PubMed  Google Scholar 

  23. Cull-Candy SG, Farrant M. Ca2+-permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol. 2021;599:2655–71. https://doi.org/10.1113/JP279029.

    Article  CAS  PubMed  Google Scholar 

  24. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math biophysics. 1943;5:115–33.

    Article  Google Scholar 

  25. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Rev. 1958;65:386–408. https://doi.org/10.1037/h0042519.

    Article  CAS  Google Scholar 

  26. Widrow B, Lehr M. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc IEEE. 1990;78:1415–42. https://doi.org/10.1109/5.58323.

    Article  Google Scholar 

  27. Bishop CM, Nasrabadi NM. Pattern recognition and machine learning. Vol. 4; Springer: New York; 2006.

  28. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press: Cambridge, Massachusetts; 2016.

  29. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, vol. 25 (Curran Associates, Inc.; 2012). https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

  30. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA. 1982;79:2554–8.

    Article  CAS  PubMed  Google Scholar 

  31. Fahlman SE, Hinton, GE, Sejnowski TJ. Massively parallel architectures for AI: METL, THISTLE, and boltzmann machines. In Proceedings of National Conference on AI. AAAI Press: Menlo Park, California 1983.

  32. Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann machines. Cogn Sci. 1985;9:147–69. https://doi.org/10.1207/s15516709cog0901_7.

    Article  Google Scholar 

  33. O’Reilly RC, Norman KA. Hippocampal and neocortical contributions to memory: Advances in the complementary learning systems framework. Trends Cogn Sci. 2002;6:505–10.

    Article  PubMed  Google Scholar 

  34. O’Reilly RC, Bhattacharyya R, Howard MD, Ketz N. Complementary learning systems. Cogn Sci. 2014;38:1229–48. https://doi.org/10.1111/j.1551-6709.2011.01214.x.

    Article  PubMed  Google Scholar 

  35. Schapiro AC, Turk-Browne NB, Botvinick MM, Norman KA. Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philos Trans R Soc B: Biol Sci. 2017;372:20160049. https://doi.org/10.1098/rstb.2016.0049.

    Article  Google Scholar 

  36. Sutton RS, Barto AG. Reinforcement Learning: An Introduction (The MIT Press, 2018), second edn. http://incompleteideas.net/book/the-book-2nd.html.

  37. Badre D, Frank MJ, Moore CI. Interactionist neuroscience. Neuron. 2015;88:855–60. https://doi.org/10.1016/j.neuron.2015.10.021.

    Article  CAS  PubMed  Google Scholar 

  38. Sehgal M, Song C, Ehlers VL, Moyer JR. Learning to learn-intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiol Learn Mem. 2013;105:186–99. https://doi.org/10.1016/j.nlm.2013.07.008.

    Article  PubMed  Google Scholar 

  39. Müller-Dahlhaus F, Ziemann U. Metaplasticity in human cortex. Neuroscientist. 2015;21:185–202. https://doi.org/10.1177/1073858414526645.

    Article  CAS  PubMed  Google Scholar 

  40. Farashahi S, Donahue CH, Khorsand P, Seo H, Lee D, Soltani A. Metaplasticity as a neural substrate for adaptive learning and choice under uncertainty. Neuron. 2017;94:401–14. https://doi.org/10.1016/j.neuron.2017.03.044.

    Article  CAS  Google Scholar 

  41. Bliss TVP, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56. https://doi.org/10.1113/jphysiol.1973.sp010273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9. https://doi.org/10.1038/361031a0.

    Article  CAS  PubMed  Google Scholar 

  43. Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF. Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science. 1993;260:1518–21. https://doi.org/10.1126/science.8502997.

    Article  CAS  PubMed  Google Scholar 

  44. Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5. https://doi.org/10.1126/science.275.5297.213.

    Article  CAS  PubMed  Google Scholar 

  45. Bi G-Q, Poo M-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18:10464–72. https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998.

    Article  CAS  PubMed  Google Scholar 

  46. Thomas MJ, Watabe AM, Moody TD, Makhinson M, O’Dell TJ. Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J Neurosci. 1998;18:7118–26. https://doi.org/10.1523/JNEUROSCI.18-18-07118.1998.

    Article  CAS  PubMed  Google Scholar 

  47. Kampa BM, Letzkus JJ, Stuart GJ. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity. J Physiol. 2006;574:283–90. https://doi.org/10.1113/jphysiol.2006.111062.

    Article  CAS  PubMed  Google Scholar 

  48. Markram HA. history of spike-timing-dependent plasticity. Front Synap Neurosci. 2011;3. https://doi.org/10.3389/fnsyn.2011.00004.

  49. Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012;75:556–71. https://doi.org/10.1016/j.neuron.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  50. Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Leßmann V. Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron. 2015;86:1041–54. https://doi.org/10.1016/j.neuron.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  51. Athalye VR, Santos FJ, Carmena JM, Costa RM. Evidence for a neural law of effect. Science. 2018;359:1024–9. https://doi.org/10.1126/science.aao6058.

    Article  CAS  PubMed  Google Scholar 

  52. Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41. https://doi.org/10.1038/sj.npp.1301559.

    Article  PubMed  Google Scholar 

  53. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48. https://doi.org/10.1523/JNEUROSCI.02-01-00032.1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bear MF, Cooper LN, Ebner FF. A physiological basis for a theory of synapse modification. Science. 1987;237:42–8.

    Article  CAS  PubMed  Google Scholar 

  55. Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci. 2012;13:798–810. https://doi.org/10.1038/nrn3353.

    Article  CAS  PubMed  Google Scholar 

  56. Evans RC, Blackwell KT. Calcium: Amplitude, duration, or location? Biol Bull. 2015;228:75–83. https://doi.org/10.1086/BBLv228n1p75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983;334:33–46. https://doi.org/10.1113/jphysiol.1983.sp014478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 1983;305:719–21. https://doi.org/10.1038/305719a0.

    Article  CAS  PubMed  Google Scholar 

  59. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. 1986;321:519–22. https://doi.org/10.1038/321519a0.

    Article  CAS  PubMed  Google Scholar 

  60. Ascher P, Nowak L. The role of divalent cations in the n-methyl-d-aspartate responses of mouse central neurones in culture. J Physiol. 1988;399:247–66. https://doi.org/10.1113/jphysiol.1988.sp017078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012;5:14. https://doi.org/10.1186/1756-6606-5-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Foncelle A, Mendes A, Jedrzejewska-Szmek J, Valtcheva S, Berry H, Blackwell KT, et al. Modulation of spike-timing dependent plasticity: Towards the inclusion of a third factor in computational models. Front Comput Neurosci. 2018;12. https://doi.org/10.3389/fncom.2018.00049.

  63. Lissin DV, Gomperts SN, Carroll RC, Christine CW, Kalman D, Kitamura M. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci. 1998;95:7097–102. https://doi.org/10.1073/pnas.95.12.7097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mangiavacchi S, Wolf ME. D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase a. J Neurochemistry. 2004;88:1261–71. https://doi.org/10.1046/j.1471-4159.2003.02248.x.

    Article  CAS  Google Scholar 

  65. Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X. et al. Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32:237–50. https://doi.org/10.1385/MN:32:3:237.

    Article  CAS  PubMed  Google Scholar 

  66. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11:459–73. https://doi.org/10.1038/nrn2867.

    Article  CAS  PubMed  Google Scholar 

  67. Greger IH, Watson JF, Cull-Candy SG. Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron. 2017;94:713–30. https://doi.org/10.1016/j.neuron.2017.04.009.

    Article  CAS  PubMed  Google Scholar 

  68. Malenka RC, Bear MF. LTP and LTD: An embarrassment of riches. Neuron. 2004;44:5–21. https://doi.org/10.1016/j.neuron.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  69. Cull-Candy SG, Leszkiewicz DN. Role of distinct NMDA receptor subtypes at central synapses. Science’s STKE 2004;2004. https://doi.org/10.1126/stke.2552004re16.

  70. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M. et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304:1021–4. https://doi.org/10.1126/science.1096615.

    Article  CAS  PubMed  Google Scholar 

  71. Massey PV. Differential roles of NR2a and NR2b-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24:7821–8. https://doi.org/10.1523/JNEUROSCI.1697-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48:289–301. https://doi.org/10.1016/j.neuron.2005.08.034.

    Article  CAS  PubMed  Google Scholar 

  73. Philpot BD, Cho KK, Bear MF. Obligatory role of NR2a for metaplasticity in visual cortex. Neuron. 2007;53:495–502. https://doi.org/10.1016/j.neuron.2007.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cho KKA, Khibnik L, Philpot BD, Bear MF. The ratio of NR2a/b NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc Natl Acad Sci. 2009;106:5377–82. https://doi.org/10.1073/pnas.0808104106.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Smith GB, Heynen AJ, Bear MF. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos Trans R Soc B: Biol Sci. 2009;364:357–67. https://doi.org/10.1098/rstb.2008.0198.

    Article  Google Scholar 

  76. Xu Z, Chen RQ, Gu QH, Yan JZ, Wang SH, Liu SY. et al. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2a/NR2b ratio. J Neurosci. 2009;29:8764–73. https://doi.org/10.1523/JNEUROSCI.1014-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee M-C, Yasuda R, Ehlers MD. Metaplasticity at single glutamatergic synapses. Neuron. 2010;66:859–70. https://doi.org/10.1016/j.neuron.2010.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Evans RC, Morera-Herreras T, Cui Y, Du K, Sheehan T, Kotaleski JH. et al. The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLOS Computational Biol. 2012;8:e1002493. https://doi.org/10.1371/journal.pcbi.1002493.

    Article  CAS  Google Scholar 

  79. Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF. et al. Distinct laminar requirements for NMDA receptors in experience-dependent visual cortical plasticity. Cereb Cortex. 2020;30:2555–72. https://doi.org/10.1093/cercor/bhz260.

    Article  PubMed  Google Scholar 

  80. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA. Structure and function of g protein-coupled receptors. Annu Rev Biochem. 1994;63:101–32.

    Article  CAS  PubMed  Google Scholar 

  81. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of g-protein-coupled receptors. Nature. 2009;459:356–63. https://doi.org/10.1038/nature08144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hell JW, Westenbroek RE, Warner C, Gilbert MM, Snutch TP, Catterall WA. Identification and differential subcellular localization of the neuronal class c and class d l-type calcium channel txl subunits. J Cell Biol. 1993;123:14.

    Article  Google Scholar 

  83. Hell JW, Westenbroek RE, Breeze LJ, Wang KK, Chavkin C, Catterall WA. N-methyl-d-aspartate receptor-induced proteolytic conversion of postsynaptic class c l-type calcium channels in hippocampal neurons. Proc Natl Acad Sci. 1996;93:3362–7. https://doi.org/10.1073/pnas.93.8.3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berger SM, Bartsch D. The role of l-type voltage-gated calcium channels cav1.2 and cav1.3 in normal and pathological brain function. Cell Tissue Res. 2014;357:463–76. https://doi.org/10.1007/s00441-014-1936-3.

    Article  CAS  PubMed  Google Scholar 

  85. Parajuli LK, Nakajima C, Kulik A, Matsui K, Schneider T, Shigemoto R. et al. Quantitative regional and ultrastructural localization of the cav2.3 subunit of r-type calcium channel in mouse brain. J Neurosci. 2012;32:13555–67. https://doi.org/10.1523/JNEUROSCI.1142-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feng Z, Glebov OO. Synaptic NMDA receptor signalling controls r-type calcium channel recruitment. Eur J Neurosci. 2021;54:4133–40. https://doi.org/10.1111/ejn.15250.

    Article  CAS  Google Scholar 

  87. Huber KM, Mauk MD, Kelly PT. Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. J Neurophysiol. 1995;73:270–9. https://doi.org/10.1152/jn.1995.73.1.270.

    Article  CAS  PubMed  Google Scholar 

  88. Freir DB, Herron CE. Inhibition of l-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo. Brain Res. 2003;967:27–36. https://doi.org/10.1016/S0006-8993(02)04190-2.

    Article  CAS  PubMed  Google Scholar 

  89. Moosmang S. Role of hippocampal cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci. 2005;25:9883–92. https://doi.org/10.1523/JNEUROSCI.1531-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qian H, Patriarchi T, Price JL, Matt L, Lee B, Nieves-Cintrón M. et al. Phosphorylation of ser1928 mediates the enhanced activity of the l-type Ca2+ channel Cav 1.2 by the β2 -adrenergic receptor in neurons. Sci Signal. 2017;10:eaaf9659. https://doi.org/10.1126/scisignal.aaf9659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav 1.2. Science. 2001;293:98–101. https://doi.org/10.1126/science.293.5527.98.

    Article  CAS  PubMed  Google Scholar 

  92. Qian H, Matt L, Zhang M, Nguyen M, Patriarchi T, Koval OM. et al. β2-adrenergic receptor supports prolonged theta tetanus-induced LTP. J Neurophysiol. 2012;107:2703–12. https://doi.org/10.1152/jn.00374.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Theis A-K, Rózsa B, Katona G, Schmitz D, Johenning FW. Voltage gated calcium channel activation by backpropagating action potentials downregulates NMDAR function. Front Cell Neurosci. 2018;12:109. https://doi.org/10.3389/fncel.2018.00109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shah M, Haylett DG. Ca2+ channels involved in the generation of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurons. J Neurophysiol. 2000;83:2554–61. https://doi.org/10.1152/jn.2000.83.5.2554.

    Article  CAS  PubMed  Google Scholar 

  95. Lima PA, Marrion NV. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons. Brain Res. 2007;1150. https://doi.org/10.1016/j.brainres.2007.02.067.

  96. McKinney BC, Sze W, Lee B, Murphy GG. Impaired long-term potentiation and enhanced neuronal excitability in the amygdala of CaV1.3 knockout mice. Neurobiol Learn Mem. 2009;92:519–28. https://doi.org/10.1016/j.nlm.2009.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Szucs A, Rátkai A, Schlett K, Huerta R. Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci. 2017;46:2429–44. https://doi.org/10.1111/ejn.13708.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Plant K, Pelkey KA, Bortolotto ZA, Morita D, Terashima A, McBain CJ. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat Neurosci. 2006;9:602–4. https://doi.org/10.1038/nn1678.

    Article  CAS  PubMed  Google Scholar 

  99. Yang Y, Wang X-b, Zhou Q. Perisynaptic GluR2-lacking AMPA receptors control the reversibility of synaptic and spines modifications. Proc Natl Acad Sci. 2010;107:11999–2004. https://doi.org/10.1073/pnas.0913004107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jaafari N, Henley JM, Hanley JG. PICK1 mediates transient synaptic expression of GluA2-lacking AMPA receptors during glycine-induced AMPA receptor trafficking. J Neurosci. 2012;32:11618–30. https://doi.org/10.1523/JNEUROSCI.5068-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lamsa KP, Heeroma JH, Somogyi P, Rusakov DA, Kullmann DM. Anti-hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science. 2007;315:1262–6. https://doi.org/10.1126/science.1137450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Camire O, Topolnik L. Dendritic calcium nonlinearities switch the direction of synaptic plasticity in fast-spiking interneurons. J Neurosci. 2014;34:3864–77. https://doi.org/10.1523/JNEUROSCI.2253-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lalanne T, Oyrer J, Farrant M, Sjöström PJ. Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. J Physiol. 2018;594:837–61. https://doi.org/10.1113/JP271394.

    Article  CAS  Google Scholar 

  104. Lalanne T, Oyrer J, Farrant M, Sjöström PJ. Synapse type-dependent expression of calcium-permeable AMPA receptors. Front Synaptic Neurosci. 2018;10:34. https://doi.org/10.3389/fnsyn.2018.00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bowie D, Mayer ML. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron. 1995;15:453–62. https://doi.org/10.1016/0896-6273(95)90049-7.

    Article  CAS  PubMed  Google Scholar 

  106. Donevan SD, Rogawski MA. Intracellular polyamines mediate inward rectification of ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci USA. 1995;92:9298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science. 2011;334:1569–73.

    Article  CAS  PubMed  Google Scholar 

  108. Hennequin G, Agnes EJ, Vogels TP. Inhibitory plasticity: Balance, control, and codependence. Annu Rev Neurosci. 2017;40:557–79. https://doi.org/10.1146/annurev-neuro-072116-031005.

    Article  CAS  PubMed  Google Scholar 

  109. Balleine BW, Liljeholm M, Ostlund SB. The integrative function of the basal ganglia in instrumental conditioning. Behav Brain Res. 2009;199:43–52. https://doi.org/10.1016/j.bbr.2008.10.034.

    Article  PubMed  Google Scholar 

  110. Gurney KN, Humphries MD, Redgrave P. A new framework for cortico-striatal plasticity: Behavioural theory meets in vitro data at the reinforcement-action interface. PLOS Biol. 2015;13:e1002034. https://doi.org/10.1371/journal.pbio.1002034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of spike-timing-dependent plasticity: Past, present, and future. Neuron. 2019;103:563–81. https://doi.org/10.1016/j.neuron.2019.05.041.

    Article  CAS  PubMed  Google Scholar 

  112. Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci. 2000;23:473–500. https://doi.org/10.1146/annurev.neuro.23.1.473.

    Article  CAS  PubMed  Google Scholar 

  113. Hamid AA, Frank MJ, Moore CI. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. Cell. 2021;184:2733–49. https://doi.org/10.1016/j.cell.2021.03.046.

    Article  CAS  Google Scholar 

  114. Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321:848–51. https://doi.org/10.1126/science.1160575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee SJ, Lodder B, Chen Y, Patriarchi T, Tian L, Sabatini BL. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature. 2021;590:451–6. https://doi.org/10.1038/s41586-020-03050-5.

    Article  CAS  PubMed  Google Scholar 

  116. Franklin NT, Frank MJ. A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. eLife. 2015;4:e12029. https://doi.org/10.7554/eLife.12029.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci. 2006;29:125–31. https://doi.org/10.1016/j.tins.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  118. Reynolds JNJ, Avvisati R, Dodson PD, Fisher SD, Oswald MJ, Wickens JR. et al. Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nat Commun. 2022;13:1296. https://doi.org/10.1038/s41467-022-28950-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3h]raclopride, [3h]spiperone and [3h]SCH23390. Neuroscience. 1991;40:657–71. https://doi.org/10.1016/0306-4522(91)90003-7.

    Article  CAS  PubMed  Google Scholar 

  120. Lidow MS, Wang F, Cao Y, Goldman-Rakic PS. Layer v neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex. Synapse. 1998;28:10–20.

    Article  CAS  PubMed  Google Scholar 

  121. Paspalas CD. Presynaptic d1 dopamine receptors in primate prefrontal cortex: Target-specific expression in the glutamatergic synapse. J Neurosci. 2005;25:1260–7. https://doi.org/10.1523/JNEUROSCI.3436-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zilles K, Palomero-Gallagher N. Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front Neuroanatom. 2017;11:78.

    Article  Google Scholar 

  123. Jacob SN, Nienborg H. Monoaminergic neuromodulation of sensory processing. Front Neural Circuits 2018;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Muly EC, Szigeti K, Goldman-Rakic PS. D 1 receptor in interneurons of macaque prefrontal cortex: Distribution and subcellular localization. J Neurosci. 1998;18:10553–65. https://doi.org/10.1523/JNEUROSCI.18-24-10553.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gorelova N, Seamans JK, Yang CR. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol. 2002;88. https://doi.org/10.1152/jn.00335.2002.

  126. Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K. et al. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron. 2021;109:3500–20. https://doi.org/10.1016/j.neuron.2021.08.024.

    Article  CAS  Google Scholar 

  127. Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology. 2021;1–20. https://doi.org/10.1038/s41386-021-01100-8. Bandiera_abtest: a Cc_license_type: cc_by Cg_type: Nature Research Journals Primary_atype: Reviews Publisher: Nature Publishing Group Subject_term: Cognitive control;Excitability Subject_term_id: cognitive-control;excitability.

  128. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine d4 receptors in GABAergic neurons of the primate brain. Nature. 1996;381:245–8. https://doi.org/10.1038/381245a0.

    Article  CAS  PubMed  Google Scholar 

  129. Chiu CQ, Puente N, Grandes P, Castillo PE. Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci. 2010;30:7236–48. https://doi.org/10.1523/JNEUROSCI.0736-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu T-X, Yao W-D. D1 and d2 dopamine receptors in separate circuits cooperate to drive associative long-term potentiation in the prefrontal cortex. Proc Natl Acad Sci. 2010;107:16366–71. https://doi.org/10.1073/pnas.1004108107.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cousineau J, Lescouzères L, Taupignon A, Delgado-Zabalza L, Valjent E, Baufreton J. et al. Dopamine d2-like receptors modulate intrinsic properties and synaptic transmission of parvalbumin interneurons in the mouse primary motor cortex. eneuro. 2020;7:ENEURO.0081–20.2020. https://doi.org/10.1523/ENEURO.0081-20.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Robinson SE, Sohal VS. Dopamine d2 receptors modulate pyramidal neurons in mouse medial prefrontal cortex through a stimulatory g-protein pathway. J Neurosci. 2017;37:10063–73. https://doi.org/10.1523/JNEUROSCI.1893-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ruan H, Saur T, Yao W-D. Dopamine-enabled anti-hebbian timing-dependent plasticity in prefrontal circuitry. Front Neural Circuits 2014;8. https://doi.org/10.3389/fncir.2014.00038.

  134. Jedrzejewska-Szmek J, Luczak V, Abel T, Blackwell KT. beta-adrenergic signaling broadly contributes to LTP induction. PLOS Computational Biol. 2017;13:e1005657. https://doi.org/10.1371/journal.pcbi.1005657.

    Article  CAS  Google Scholar 

  135. Salgado H, Köhr G, Treviño M. Noradrenergic ’tone’ determines dichotomous control of cortical spike-timing-dependent plasticity. Sci Rep. 2012;2:417. https://doi.org/10.1038/srep00417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K. et al. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron. 2007;55:919–29. https://doi.org/10.1016/j.neuron.2007.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci. 1999;19:1599–609. https://doi.org/10.1523/JNEUROSCI.19-05-01599.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi S-Y. Multiple receptors coupled to phospholipase c gate long-term depression in visual cortex. J Neurosci. 2005;25:11433–43. https://doi.org/10.1523/JNEUROSCI.4084-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huang S, Treviño M, He K, Ardiles A, de Pasquale R, Guo Y. et al. Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron. 2012;73:497–510. https://doi.org/10.1016/j.neuron.2011.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hong SZ, Mesik L, Grossman CD, Cohen JY, Lee B, Lee HK. et al. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun. 2022;13:3202. https://doi.org/10.1038/s41467-022-30827-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Trevino M, Frey S, Kohr G. Alpha-1 adrenergic receptors gate rapid orientation-specific reduction in visual discrimination. Cereb Cortex. 2012;22:2529–41. https://doi.org/10.1093/cercor/bhr333.

    Article  PubMed  Google Scholar 

  142. Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res. 2016;1641:163–76. https://doi.org/10.1016/j.brainres.2016.01.033.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang J-C, Lau P-M, Bi G-Q. Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci. 2009;106:13028–33. https://doi.org/10.1073/pnas.0900546106.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Edelmann E, Lessmann V. Dopamine modulates spike timing-dependent plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices. Front Synap Neurosci. 2011;3:6.

    CAS  Google Scholar 

  145. Edelmann E, Lessmann V. Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus. Front Neurosci. 2013;7.

  146. Yang K, Dani JA. Dopamine d1 and d5 receptors modulate spike timing-dependent plasticity at medial perforant path to dentate granule cell synapses. J Neurosci. 2014;34:15888–97. https://doi.org/10.1523/JNEUROSCI.2400-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brzosko Z, Schultz W, Paulsen O. Retroactive modulation of spike timing-dependent plasticity by dopamine. eLife. 2015;4:e09685. https://doi.org/10.7554/eLife.09685.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Edelmann E, Cepeda-Prado E, Leßmann V. Coexistence of multiple types of synaptic plasticity in individual hippocampal CA1 pyramidal neurons. Front Synap Neurosci. 2017;9:7.

    Google Scholar 

  149. Lin Y-W, Min M-Y, Chiu T-H, Yang H-W. Enhancement of associative long-term potentiation by activation of β-adrenergic receptors at CA1 synapses in rat hippocampal slices. J Neurosci. 2003;23:4173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O. Sequential neuromodulation of hebbian plasticity offers mechanism for effective reward-based navigation. eLife. 2017;6. https://doi.org/10.7554/eLife.27756.

  151. Sugisaki E, Fukushima Y, Tsukada M, Aihara T. Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network. Neuroscience. 2011;192:91–101. https://doi.org/10.1016/j.neuroscience.2011.06.064.

    Article  CAS  PubMed  Google Scholar 

  152. Sugisaki E, Fukushima Y, Fujii S, Yamazaki Y, Aihara T. The effect of coactivation of muscarinic and nicotinic acetylcholine receptors on LTD in the hippocampal CA1 network. Brain Res. 2016;1649:44–52. https://doi.org/10.1016/j.brainres.2016.08.024.

    Article  CAS  PubMed  Google Scholar 

  153. Thomas MJ, Moody TD, Makhinson M, O’Dell TJ. Activity-dependent β-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron. 1996;17:475–82.

    Article  CAS  PubMed  Google Scholar 

  154. Connor SA, Maity S, Roy B, Ali DW, Nguyen PV. Conversion of short-term potentiation to long-term potentiation in mouse CA1 by coactivation of β-adrenergic and muscarinic receptors. Learn Mem. 2012;19:535–42. https://doi.org/10.1101/lm.026898.112.

    Article  CAS  PubMed  Google Scholar 

  155. Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. Learn Mem. 2015;22:499–508. https://doi.org/10.1101/lm.039222.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ito T, Miura Y, Kadokawa T. Effects of physostigmine and scopolamine on long-term potentiation of hippocampal population spikes in rats. Can J Physiol Pharmacol. 1988;66:1010–6. https://doi.org/10.1139/y88-165.

    Article  CAS  PubMed  Google Scholar 

  157. Blitzer RD, Gil O, Landau EM. Cholinergic stimulation enhances long-term potentiation in the CA1 region of rat hippocampus. Neurosci Lett. 1990;119:207–10. https://doi.org/10.1016/0304-3940(90)90835-W.

    Article  CAS  PubMed  Google Scholar 

  158. Boddeke EW, Enz A, Shapiro G. SDZ ENS 163, a selective muscarinic m1 receptor agonist, facilitates the induction of long-term potentiation in rat hippocampal slices. Eur J Pharmacol. 1992;222:21–5. https://doi.org/10.1016/0014-2999(92)90457-F.

    Article  CAS  PubMed  Google Scholar 

  159. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature. 1993;364:723–5.

    Article  CAS  PubMed  Google Scholar 

  160. Auerbach JM, Segal M. A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol. 1994;72:2034–40. https://doi.org/10.1152/jn.1994.72.4.2034.

    Article  CAS  PubMed  Google Scholar 

  161. Huerta PT, Lisman JE. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 1995;15:1053–63. https://doi.org/10.1016/0896-6273(95)90094-2.

    Article  CAS  PubMed  Google Scholar 

  162. Natsume K, Kometani K. θ-activity-dependent and-independent muscarinic facilitation of long-term potentiation in guinea pig hippocampal slices. Neurosci Res. 1997;27:335–41.

  163. Patil MM, Linster C, Lubenov E, Hasselmo ME. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J Neurophysiol. 1998;80:2467–74. https://doi.org/10.1152/jn.1998.80.5.2467.

    Article  CAS  PubMed  Google Scholar 

  164. Ovsepian SV, Anwyl R, Rowan MJ. Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur J Neurosci. 2004;20:1267–75. https://doi.org/10.1111/j.1460-9568.2004.03582.x.

    Article  PubMed  Google Scholar 

  165. Shinoe T. Modulation of synaptic plasticity by physiological activation of m1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci. 2005;25:11194–200. https://doi.org/10.1523/JNEUROSCI.2338-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic m1 receptors is mediated by inhibition of SK channels. Neuron. 2010;68:948–63. https://doi.org/10.1016/j.neuron.2010.11.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dennis SH, Pasqui F, Colvin EM, Sanger H, Mogg AJ, Felder CC. et al. Activation of muscarinic m1 acetylcholine receptors induces long-term potentiation in the hippocampus. Cereb Cortex. 2016;26:414–26. https://doi.org/10.1093/cercor/bhv227.

    Article  PubMed  Google Scholar 

  168. Massey PV, Bhabra G, Cho K, Brown MW, Bashir ZI. Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. Eur J Neurosci. 2001;14:145–52. https://doi.org/10.1046/j.0953-816x.2001.01631.x.

    Article  CAS  PubMed  Google Scholar 

  169. Jo J, Ball SM, Seok H, Oh SB, Massey PV, Molnar E. et al. Experience-dependent modification of mechanisms of long-term depression. Nat Neurosci. 2006;9:170–2. https://doi.org/10.1038/nn1637.

    Article  CAS  PubMed  Google Scholar 

  170. Volk LJ, Pfeiffer BE, Gibson JR, Huber KM. Multiple gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile x syndrome mental retardation. J Neurosci. 2007;27:11624–34. https://doi.org/10.1523/JNEUROSCI.2266-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dickinson BA, Jo J, Seok H, Son GH, Whitcomb DJ, Davies CH. et al. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α. Mol Brain. 2009;2:18. https://doi.org/10.1186/1756-6606-2-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu L-J, Wang Y-T, Zhuo M. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus. Mol Brain. 2009;2:17. 1756–6606–2–17. https://doi.org/10.1186/1756-6606-2-17.

    Article  CAS  Google Scholar 

  173. Xiong CH, Liu MG, Zhao LX, Chen MW, Tang L, Yan YH. et al. M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors. Neuropharmacology. 2019;146:242–51. https://doi.org/10.1016/j.neuropharm.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  174. Gulledge AT. Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci. 2005;25:10308–20. https://doi.org/10.1523/JNEUROSCI.2697-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Giessel AJ, Sabatini BL. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron. 2010;68:936–47. https://doi.org/10.1016/j.neuron.2010.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Thiele A. Muscarinic signaling in the brain. Annu Rev Neurosci. 2013;36:271–94. https://doi.org/10.1146/annurev-neuro-062012-170433.

    Article  CAS  PubMed  Google Scholar 

  177. Williams RJ. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn. 1992;8:229–56.

    Article  Google Scholar 

  178. Pawlak V, Wickens J, Kirkwood A, Kerr J.Timing is not everything: Neuromodulation opens the STDP gate. Front Synap Neurosci. 2010;2. https://doi.org/10.3389/fnsyn.2010.00146.

  179. Frémaux N, Gerstner W. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front Neural Circuits 2016;9. https://doi.org/10.3389/fncir.2015.00085.

  180. Gerstner W, Lehmann M, Liakoni V, Corneil D, Brea J. Eligibility traces and plasticity on behavioral time scales: Experimental support of NeoHebbian three-factor learning rules. Front Neural Circuits. 2018;12:53. https://doi.org/10.3389/fncir.2018.00053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Caporale N, Dan Y. Spike timing-dependent plasticity: A hebbian learning rule. Annu Rev Neurosci. 2008;31:25–46. https://doi.org/10.1146/annurev.neuro.31.060407.125639.

    Article  CAS  PubMed  Google Scholar 

  182. Sanger TD. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 1989;2:459–73. https://doi.org/10.1016/0893-6080(89)90044-0.

    Article  Google Scholar 

  183. Oja E. Simplified neuron model as a principal component analyzer. J Math Biol. 1982;15:267–73. https://doi.org/10.1007/BF00275687.

    Article  CAS  PubMed  Google Scholar 

  184. Karhunen J. Adaptive algorithms for estimating eigenvectors of correlation type matrices. ICASSP ’84 IEEE Int Conf Acoust, Speech, Signal Process. 1984;9:592–5. https://doi.org/10.1109/ICASSP.1984.1172323.

    Article  Google Scholar 

  185. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411–30.

    Article  PubMed  Google Scholar 

  186. Grossberg S. Competitive learning: From interactive activation to adaptive resonance. Cogn Sci. 1987;11:23–63. https://doi.org/10.1111/j.1551-6708.1987.tb00862.x.

    Article  Google Scholar 

  187. Hertz J, Krogh A, Palmer RG. Introduction to the theory of neural computation. CRC Press: Boca Raton, Florida; 1991.

  188. Miller KD, MacKay DJC. The role of constraints in hebbian learning. Neural Comput. 1994;6:100–26. https://doi.org/10.1162/neco.1994.6.1.100.

    Article  Google Scholar 

  189. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLOS Biol. 2005;3:e68. https://doi.org/10.1371/journal.pbio.0030068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sirosh J, Miikkulainen R. Cooperative self-organization of afferent and lateral connections in cortical maps. Biol Cybern. 1994;71:65–78.

    Article  Google Scholar 

  191. Miller KD. Synaptic economics: Competition and cooperation in synaptic plasticity. Neuron. 1996;17:371–4. https://doi.org/10.1016/S0896-6273(00)80169-5.

    Article  CAS  PubMed  Google Scholar 

  192. Buonomano DV, Merzenich MM. CORTICAL PLASTICITY: From synapses to maps. Annu Rev Neurosci. 1998;21:149–86. https://doi.org/10.1146/annurev.neuro.21.1.149.

    Article  CAS  PubMed  Google Scholar 

  193. Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science. 2005;310:810–5. https://doi.org/10.1126/science.1115807.

    Article  CAS  PubMed  Google Scholar 

  194. Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, Ko H. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature. 2015;518:399–403. https://doi.org/10.1038/nature14182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee WCA, Bonin V, Reed M, Graham BJ, Hood G, Glattfelder K. et al. Anatomy and function of an excitatory network in the visual cortex. Nature. 2016;532:370–4. https://doi.org/10.1038/nature17192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lindsay GW, Rigotti M, Warden MR, Miller EK, Fusi S. Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J Neurosci. 2017;37:11021–36. https://doi.org/10.1523/JNEUROSCI.1222-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Peron S, Pancholi R, Voelcker B, Wittenbach JD, Ólafsdóttir HF, Freeman J. et al. Recurrent interactions in local cortical circuits. Nature. 2020;579:256–9. https://doi.org/10.1038/s41586-020-2062-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Mcclelland JL, Mcnaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Rev. 1995;102:419–57.

    Article  Google Scholar 

  199. von der Malsburg C. The correlation theory of brain function. In: Domany E, van Hemmen JL, Schulten K, editors. Models of Neural Networks, 95-119, https://doi.org/10.1007/978-1-4612-4320-5_2 (Springer New York; 1994).

  200. Gerstner W, Kistler WM. Mathematical formulations of hebbian learning. Biol Cybern. 2002;87:404–15. https://doi.org/10.1007/s00422-002-0353-y.

    Article  PubMed  Google Scholar 

  201. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6. https://doi.org/10.1038/36103.

    Article  CAS  PubMed  Google Scholar 

  202. Turrigiano G. Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4:a005736–a005736. https://doi.org/10.1101/cshperspect.a005736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Toyoizumi T, Kaneko M, Stryker MP, Miller KD. Modeling the dynamic interaction of hebbian and homeostatic plasticity. Neuron. 2014;84:497–510. https://doi.org/10.1016/j.neuron.2014.09.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, Fox K. et al. Integrating hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos Trans R Soc B: Biol Sci. 2017;372:20160158. https://doi.org/10.1098/rstb.2016.0158.

    Article  CAS  Google Scholar 

  205. Fox K, Stryker M. Integrating hebbian and homeostatic plasticity: introduction. Philos Trans R Soc B: Biol Sci. 2017;372:20160413. https://doi.org/10.1098/rstb.2016.0413.

    Article  Google Scholar 

  206. Wu YK, Hengen KB, Turrigiano GG, Gjorgjieva J. Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. Proc Natl Acad Sci. 2020;117:24514–25. https://doi.org/10.1073/pnas.1918368117.

    Article  CAS  PubMed  Google Scholar 

  207. Shimizu G, Yoshida K, Kasai H, Toyoizumi T. Computational roles of intrinsic synaptic dynamics. Curr Opin Neurobiol. 2021;70:34–42. https://doi.org/10.1016/j.conb.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  208. O’reilly RC. Generalization in interactive networks: The benefits of inhibitory competition and hebbian learning. Neural Comput. 2001;13:1199–241.

    Article  PubMed  Google Scholar 

  209. Krotov D, Hopfield JJ. Unsupervised learning by competing hidden units. Proc Natl Acad Sci. 2019;116:7723–31. https://doi.org/10.1073/pnas.1820458116.

    Article  CAS  PubMed  Google Scholar 

  210. Cao Y, Summerfield C, Saxe A. Characterizing emergent representations in a space of candidate learning rules for deep networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems, vol. 33, 8660-70. Curran Associates, Inc: Red Hook, New York; 2020.

  211. Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. Rich and lazy learning of task representations in brains and neural networks. bioRxiv. 2021;2021.04.23.441128. https://doi.org/10.1101/2021.04.23.441128.

  212. Nassar MR, Scott D, Bhandari A. Noise correlations for faster and more robust learning. J Neurosci. 2021;41:6740–52. https://doi.org/10.1523/JNEUROSCI.3045-20.2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Pehlevan C, Sengupta A, Chklovskii DB. Why do similarity matching objectives lead to hebbian/anti-hebbian networks? Neural Comput. 2018;30:84–124. https://doi.org/10.1162/neco_a_01018.

    Article  PubMed  Google Scholar 

  214. Kozachkov L, Lundqvist M, Slotine J-J, Miller EK. Achieving stable dynamics in neural circuits. PLOS Computational Biol. 2020;16:e1007659. https://doi.org/10.1371/journal.pcbi.1007659.

    Article  CAS  Google Scholar 

  215. Sjöström J, Gerstner W. Spike-timing dependent plasticity. Scholarpedia. 2010;5:1362. https://doi.org/10.4249/scholarpedia.1362.

    Article  Google Scholar 

  216. He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H. et al. Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron. 2015;88:528–38. https://doi.org/10.1016/j.neuron.2015.09.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science. 2017;357:1033–6. https://doi.org/10.1126/science.aan3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Shindou T, Shindou M, Watanabe S, Wickens J. A silent eligibility trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse striatum. Eur J Neurosci. 2019;49:726–36. https://doi.org/10.1111/ejn.13921.

    Article  PubMed  Google Scholar 

  219. Yamaguchi K, Maeda Y, Sawada T, Iino Y, Tajiri M, Nakazato R. et al. A behavioural correlate of the synaptic eligibility trace in the nucleus accumbens. Sci Rep. 2022;12:1921. https://doi.org/10.1038/s41598-022-05637-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM. Synaptic tagging and capture: Differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci. 2010;30:4981–9. https://doi.org/10.1523/JNEUROSCI.3140-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Redondo RL, Morris RGM. Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci. 2011;12:17–30. https://doi.org/10.1038/nrn2963.

    Article  CAS  PubMed  Google Scholar 

  222. Lisman J, Grace AA, Duzel E. A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 2011;34:536–47. https://doi.org/10.1016/j.tins.2011.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M. et al. On the role of calcium-permeable AMPARs in long-term potentiation and synaptic tagging in the rodent hippocampus. Front Synap Neurosci. 2019;11:4.

  224. Luboeinski J, Tetzlaff C. Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks. Commun Biol. 2021;4:275. https://doi.org/10.1038/s42003-021-01778-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Okuda K, Højgaard K, Privitera L, Bayraktar G, Takeuchi T. Initial memory consolidation and the synaptic tagging and capture hypothesis. Eur J Neurosci. 2021;54:6826–49. https://doi.org/10.1111/ejn.14902.

    Article  CAS  PubMed  Google Scholar 

  226. Pfister J-P. Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci. 2006;26:9673–82. https://doi.org/10.1523/JNEUROSCI.1425-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gjorgjieva J, Clopath C, Audet J, Pfister J-P. A triplet spike-timing-dependent plasticity model generalizes the bienenstock-cooper-munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci. 2011;108:19383–8. https://doi.org/10.1073/pnas.1105933108.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Babadi B, Abbott LF. Stability and competition in multi-spike models of spike-timing dependent plasticity. PLOS Computational Biol. 2016;12:e1004750. https://doi.org/10.1371/journal.pcbi.1004750.

    Article  CAS  Google Scholar 

  229. Montangie L, Miehl C, Gjorgjieva J. Autonomous emergence of connectivity assemblies via spike triplet interactions. PLOS Computational Biol. 2020;16:e1007835. https://doi.org/10.1371/journal.pcbi.1007835.

    Article  CAS  Google Scholar 

  230. Clopath C, Büsing L, Vasilaki E, Gerstner W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci. 2010;13:344–52. https://doi.org/10.1038/nn.2479.

    Article  CAS  PubMed  Google Scholar 

  231. Clopath C, Gerstner W. Voltage and spike timing interact in STDP—a unified model. Front Synap Neurosci. 2010;2. https://doi.org/10.3389/fnsyn.2010.00025.

  232. Dan Y, Poo M-m. Spike timing-dependent plasticity of neural circuits. Neuron. 2004;44:23–30. https://doi.org/10.1016/j.neuron.2004.09.007.

    Article  CAS  PubMed  Google Scholar 

  233. Bell, C. C., Caputi, A., Grant, K. & Serrier, J.Storage of a sensory pattern by anti-hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci. 1993;90. https://doi.org/10.1073/pnas.90.10.4650.

  234. Han VZ, Grant K, Bell CC. Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron. 2000;27:611–22. https://doi.org/10.1016/S0896-6273(00)00070-2.

    Article  CAS  PubMed  Google Scholar 

  235. Roberts P, Leen T. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing. Front Comput Neurosci. 2010;4:156.

  236. Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ. et al. The roles of the olivocerebellar pathway in motor learning and motor control. a consensus paper. Cerebellum. 2017;16:230–52. https://doi.org/10.1007/s12311-016-0787-8.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Paille V, Fino E, Du K, Morera-Herreras T, Perez S, Kotaleski JH. et al. GABAergic circuits control spike-timing-dependent plasticity. J Neurosci. 2013;33:9353–63. https://doi.org/10.1523/JNEUROSCI.5796-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kempter R, Gerstner W, Hemmen JLV. Intrinsic stabilization of output rates by spike-based hebbian learning. Neural Comput. 2001;13:2709–41. https://doi.org/10.1162/089976601317098501.

    Article  CAS  PubMed  Google Scholar 

  239. Sboev A, Vlasov D, Serenko A, Rybka R, Moloshnikov I. A comparison of learning abilities of spiking networks with different spike timing-dependent plasticity forms. J Phys: Conf Ser. 2016;681:012013. https://doi.org/10.1088/1742-6596/681/1/012013.

    Article  CAS  Google Scholar 

  240. Abeles M. Local cortical circuits: an electrophysiological study. Springer Science & Business Media: New York; 1982.

  241. Diesmann M, Gewaltig M-O, Aertsen A. Stable propagation of synchronous spiking in cortical neural networks. Nature. 1999;402:529–33. https://doi.org/10.1038/990101.

    Article  CAS  PubMed  Google Scholar 

  242. Aviel Y, Mehring C, Abeles M, Horn D. On embedding synfire chains in a balanced network. Neural Comput. 2003;15:1321–40. https://doi.org/10.1162/089976603321780290.

    Article  CAS  PubMed  Google Scholar 

  243. Yazdanbakhsh A, Babadi B, Rouhani S, Arabzadeh E, Abbassian A. New attractor states for synchronous activity in synfire chains with excitatory and inhibitory coupling. Biol Cybern. 2002;86:367–78. https://doi.org/10.1007/s00422-001-0293-y.

    Article  PubMed  Google Scholar 

  244. Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A. Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol Cybern. 2003;88:395–408. https://doi.org/10.1007/s00422-002-0384-4.

    Article  PubMed  Google Scholar 

  245. Izhikevich EM. Polychronization: Computation with spikes. Neural Comput. 2006;18:245–82. https://doi.org/10.1162/089976606775093882.

    Article  PubMed  Google Scholar 

  246. Hosaka R, Araki O, Ikeguchi T. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput. 2008;20:415–35. https://doi.org/10.1162/neco.2007.11-05-043.

    Article  PubMed  Google Scholar 

  247. Kumar A, Rotter S, Aertsen A. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. J Neurosci. 2008;28:5268–80. https://doi.org/10.1523/JNEUROSCI.2542-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci. 2010;11:615–27. https://doi.org/10.1038/nrn2886.

    Article  CAS  PubMed  Google Scholar 

  249. Trengove C, van Leeuwen C, Diesmann M. High-capacity embedding of synfire chains in a cortical network model. J Comput Neurosci. 2013;34:185–209. https://doi.org/10.1007/s10827-012-0413-9.

    Article  PubMed  Google Scholar 

  250. Zheng P, Triesch J. Robust development of synfire chains from multiple plasticity mechanisms. Front Comput Neurosci. 2014;8. https://doi.org/10.3389/fncom.2014.00066.

  251. Wang Z, Sornborger AT, Tao L. Graded, dynamically routable information processing with synfire-gated synfire chains. PLOS Comput Biol. 2016;12:e1004979. https://doi.org/10.1371/journal.pcbi.1004979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bienenstock E. A model of neocortex. Netw: Comput neural Syst. 1995;6:179–224.

    Article  Google Scholar 

  253. Abeles M, Hayon G, Lehmann D. Modeling compositionality by dynamic binding of synfire chains. J Compu Neurosci. 2004;17:179–201. https://doi.org/10.1023/B:JCNS.0000037682.18051.5f.

    Article  Google Scholar 

  254. Hanuschkin A, Herrmann JM, Morrison A, Diesmann M. Compositionality of arm movements can be realized by propagating synchrony. J Comput Neurosci. 2011;30:675–97. https://doi.org/10.1007/s10827-010-0285-9.

    Article  PubMed  Google Scholar 

  255. Aviel Y, Pavlov E, Abeles M, Horn D. Synfire chain in a balanced network. Neurocomputing. 2002;44:285–92.

  256. Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex. 2007;17:2443–52. https://doi.org/10.1093/cercor/bhl152.

    Article  PubMed  Google Scholar 

  257. Farries MA, Fairhall AL. Reinforcement learning with modulated spike timing-dependent synaptic plasticity. J Neurophysiol. 2007;98:3648–65. https://doi.org/10.1152/jn.00364.2007.

    Article  PubMed  Google Scholar 

  258. Legenstein R, Pecevski D, Maass W. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Computational Biol. 2008;4:e1000180. https://doi.org/10.1371/journal.pcbi.1000180.

    Article  CAS  Google Scholar 

  259. Fremaux N, Sprekeler H, Gerstner W. Functional requirements for reward-modulated spike-timing-dependent plasticity. J Neurosci. 2010;30:13326–37. https://doi.org/10.1523/JNEUROSCI.6249-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Babadi B. Network Structures Arising from Spike-Timing Dependent Plasticity. Ph.D. thesis, 2011. https://academiccommons.columbia.edu/doi/10.7916/D8DF6Z6S. Accessed 16 February 2022.

  261. Kayser C, Logothetis NK, Panzeri S. Millisecond encoding precision of auditory cortex neurons. Proc Natl Acad Sci. 2010;107. https://doi.org/10.1073/pnas.1012656107.

  262. Wang X. Cortical coding of auditory features. Annu Rev Neurosci. 2018;41:527–52. https://doi.org/10.1146/annurev-neuro-072116-031302.

    Article  CAS  PubMed  Google Scholar 

  263. Luczak A, Bartho P, Marguet SL, Buzsaki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci. 2007;104:347–52. https://doi.org/10.1073/pnas.0605643104.

    Article  CAS  PubMed  Google Scholar 

  264. Luczak A, Barthó P, Harris KD. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron. 2009;62:413–25. https://doi.org/10.1016/j.neuron.2009.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Luczak A, Bartho P, Harris KD. Gating of sensory input by spontaneous cortical activity. J Neurosci. 2013;33:1684–95. https://doi.org/10.1523/JNEUROSCI.2928-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Schrader S, Grün S, Diesmann M, Gerstein GL. Detecting synfire chain activity using massively parallel spike train recording. J Neurophysiol. 2008;100:2165–76. https://doi.org/10.1152/jn.01245.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Gerstein GL, Williams ER, Diesmann M, Grün S, Trengove C. Detecting synfire chains in parallel spike data. J Neurosci Methods. 2012;206:54–64. https://doi.org/10.1016/j.jneumeth.2012.02.003.

    Article  PubMed  Google Scholar 

  268. Russo E, Durstewitz D. Cell assemblies at multiple time scales with arbitrary lag constellations. eLife. 2017;6:e19428. https://doi.org/10.7554/eLife.19428.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Gulati T, Ramanathan DS, Wong CC, Ganguly K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat Neurosci. 2014;17:1107–13. https://doi.org/10.1038/nn.3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Hasenstaub A, Otte S, Callaway E. Cell type-specific control of spike timing by gamma-band oscillatory inhibition. Cerebral Cortex. 2015. https://doi.org/10.1093/cercor/bhv044.

  271. Luz Y, Shamir M. Oscillations via spike-timing dependent plasticity in a feed-forward model. PLOS Comput Biol. 2016;12. https://doi.org/10.1371/journal.pcbi.1004878.

  272. Silversmith DB, Lemke SM, Egert D, Berke JD, Ganguly K. The degree of nesting between spindles and slow oscillations modulates neural synchrony. J Neurosci. 2020;40:4673–84. https://doi.org/10.1523/JNEUROSCI.2682-19.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Fiete IR, Senn W, Wang CZ, Hahnloser RH. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron. 2010;65:563–76. https://doi.org/10.1016/j.neuron.2010.02.003.

    Article  CAS  PubMed  Google Scholar 

  274. Mazzucato L, Fontanini A, Camera GL. Dynamics of multistable states during ongoing and evoked cortical activity. J Neurosci. 2015;35:8214–31. https://doi.org/10.1523/JNEUROSCI.4819-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. La Camera G, Fontanini A, Mazzucato L. Cortical computations via metastable activity. Curr Opin Neurobiol. 2019;58:37–45. https://doi.org/10.1016/j.conb.2019.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W. Spike-based reinforcement learning in continuous state and action space: When policy gradient methods fail. PLoS Comput Biol. 2009;5. https://doi.org/10.1371/journal.pcbi.1000586.

  277. Frémaux N, Sprekeler H, Gerstner W. Reinforcement learning using a continuous time actor-critic framework with spiking neurons. PLOS Computational Biol. 2013;9:e1003024. https://doi.org/10.1371/journal.pcbi.1003024.

    Article  CAS  Google Scholar 

  278. Scott DN, Frank MJ. Beyond gradients: Noise correlations control hebbian plasticity to shape credit assignment. 2021. https://doi.org/10.1101/2021.11.19.466943.

  279. Xie X, Seung HS. Learning in neural networks by reinforcement of irregular spiking. Phys Rev E. 2004;69:041909. https://doi.org/10.1103/PhysRevE.69.041909.

    Article  CAS  Google Scholar 

  280. Frank MJ. Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci. 2005;17:51–72. https://doi.org/10.1162/0898929052880093.

    Article  PubMed  Google Scholar 

  281. Baras D, Meir R. Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Neural Comput. 2007;19:2245–79. https://doi.org/10.1162/neco.2007.19.8.2245.

    Article  PubMed  Google Scholar 

  282. Florian RV. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput. 2007;19:1468–502. https://doi.org/10.1162/neco.2007.19.6.1468.

    Article  PubMed  Google Scholar 

  283. di Castro D, Volkinshtein D, Meir R. Temporal difference based actor critic learning—convergence and neural implementation. In: Advances in Neural Information Processing Systems, vol. 21. Curran Associates, Inc.: Red Hook, NY; 2008.

  284. Urbanczik R, Senn W. Reinforcement learning in populations of spiking neurons. Nat Neurosci. 2009;12:250–2. https://doi.org/10.1038/nn.2264.

    Article  CAS  PubMed  Google Scholar 

  285. Law C-T, Gold JI. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat Neurosci. 2009;12:655–63. https://doi.org/10.1038/nn.2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Frank MJ, Badre D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: Computational analysis. Cereb Cortex. 2012;22:509–26. https://doi.org/10.1093/cercor/bhr114.

    Article  PubMed  Google Scholar 

  287. Collins AGE, Frank MJ. Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychological Rev. 2014;121:337–66. https://doi.org/10.1037/a0037015.

    Article  Google Scholar 

  288. Song HF, Yang GR, Wang X-J. Reward-based training of recurrent neural networks for cognitive and value-based tasks. eLife. 2017;6:e21492. https://doi.org/10.7554/eLife.21492.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, et al. Prefrontal cortex as a meta-reinforcement learning system. Nat Neurosci. 2018;21:860–8. https://doi.org/10.1038/s41593-018-0147-8.

    Article  CAS  PubMed  Google Scholar 

  290. Isomura T, Toyoizumi T. A local learning rule for independent component analysis. Sci Rep. 2016;6:1–17. https://doi.org/10.1038/srep28073.

    Article  CAS  Google Scholar 

  291. Isomura T, Toyoizumi T. Error-gated hebbian rule: A local learning rule for principal and independent component analysis. Sci Rep. 2018;8:1835. https://doi.org/10.1038/s41598-018-20082-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Seung H. Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron. 2003;40:1063–1073. https://doi.org/10.1016/S0896-6273(03)00761-X.

    Article  CAS  PubMed  Google Scholar 

  293. Xie X, Seung HS. Equivalence of backpropagation and contrastive hebbian learning in a layered network. Neural Comput. 2003;15:441–54.

    Article  PubMed  Google Scholar 

  294. Fiete IR, Seung HS. Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys Rev Lett. 2006;97:048104. https://doi.org/10.1103/PhysRevLett.97.048104.

    Article  CAS  PubMed  Google Scholar 

  295. Loewenstein Y, Seung HS. Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc Natl Acad Sci. 2006;103:15224–9. https://doi.org/10.1073/pnas.0505220103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Loewenstein Y. Robustness of learning that is based on covariance-driven synaptic plasticity. PLOS Comput Biol. 2008;4:e1000007. https://doi.org/10.1371/journal.pcbi.1000007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Richards BA, Lillicrap TP. Dendritic solutions to the credit assignment problem. Curr Opin Neurobiol. 2019;54:28–36. https://doi.org/10.1016/j.conb.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  298. Mel BW. Why have dendrites? a computational perspective. In: Dendrites, 22. 2nd ed. Oxford University Press: Oxford, England; 2006.

  299. Antic SD, Zhou W-L, Moore AR, Short SM, Ikonomu KD. The decade of the dendritic NMDA spike. J Neurosci Res. 2010;88:2991–3001. https://doi.org/10.1002/jnr.22444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Major G, Larkum ME, Schiller J. Active properties of neocortical pyramidal neuron dendrites. Annu Rev Neurosci. 2013;36:1–24. https://doi.org/10.1146/annurev-neuro-062111-150343.

    Article  CAS  PubMed  Google Scholar 

  301. Gambino F, Pagès S, Kehayas V, Baptista D, Tatti R, Carleton A, et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature. 2014;515:116–9. https://doi.org/10.1038/nature13664.

    Article  CAS  PubMed  Google Scholar 

  302. Sabatini BL, Oertner TG, Svoboda K. The life cycle of Ca2+ ions in dendritic spines. Neuron. 2002;33:439–52. https://doi.org/10.1016/S0896-6273(02)00573-1.

    Article  CAS  PubMed  Google Scholar 

  303. Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Annu Rev Physiol. 2002;64:313.

  304. Bloodgood BL, Sabatini BL. Ca2+ signaling in dendritic spines. Curr Opin Neurobiol. 2007;17:345–51. https://doi.org/10.1016/j.conb.2007.04.003.

    Article  CAS  PubMed  Google Scholar 

  305. Chalifoux JR, Carter AG. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J Neurosci. 2011;31:4221–32. https://doi.org/10.1523/JNEUROSCI.4561-10.2011.

    Article  CAS  PubMed  Google Scholar 

  306. Higley MJ. Localized GABAergic inhibition of dendritic Ca2+ signalling. Nat Rev Neurosci. 2014;15:567–72. https://doi.org/10.1038/nrn3803.

    Article  CAS  PubMed  Google Scholar 

  307. Tsubokawa H, Ross WN. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J Neurophysiol. 1996;76:2896–2906. https://doi.org/10.1152/jn.1996.76.5.2896.

    Article  CAS  PubMed  Google Scholar 

  308. Cichon J, Gan W-B. Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity. Nature. 2015;520:180–5. https://doi.org/10.1038/nature14251.

    Article  CAS  PubMed  Google Scholar 

  309. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science. 2014;344:1173–8. https://doi.org/10.1126/science.1249098.

    Article  CAS  PubMed  Google Scholar 

  310. Sehgal M, Filho DA, Kastellakis G, Kim S, Lee J, Martin S, et al. Co-allocation to overlapping dendritic branches in the retrosplenial cortex integrates memories across time. 2021. https://doi.org/10.1101/2021.10.28.466343.

  311. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79–87. https://doi.org/10.1038/4580.

    Article  CAS  PubMed  Google Scholar 

  312. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012;76:695–711. https://doi.org/10.1016/j.neuron.2012.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Millidge B, Seth A, Buckley CL. Predictive coding: a theoretical and experimental review. arXiv:2107.12979 [cs, q-bio]. (2021)

  314. Dayan P, Daw ND. Decision theory, reinforcement learning, and the brain. Cogn, Affect, Behav Neurosci. 2008;8:429–53. https://doi.org/10.3758/CABN.8.4.429.

    Article  PubMed  Google Scholar 

  315. Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci. 2011;12:509–23. https://doi.org/10.1038/nrn3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CCH. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat Neurosci. 2013;16:1671–7. https://doi.org/10.1038/nn.3532.

    Article  CAS  PubMed  Google Scholar 

  317. Neske GT, Nestvogel D, Steffan PJ, McCormick DA. Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance. J Neurosci. 2019;39:10044–59. https://doi.org/10.1523/JNEUROSCI.1226-18.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Sara SJ, Bouret S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron. 2012;76:130–41. https://doi.org/10.1016/j.neuron.2012.09.011.

    Article  CAS  PubMed  Google Scholar 

  319. Eldar E, Cohen JD, Niv Y. The effects of neural gain on attention and learning. Nat Neurosci. 2013;16:1146–53. https://doi.org/10.1038/nn.3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Waterhouse BD, Navarra RL.The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res. 2019;1709. https://doi.org/10.1016/j.brainres.2018.08.032.

  321. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29. https://doi.org/10.1016/j.neuron.2012.08.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Polack P-O, Friedman J, Golshani P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat Neurosci. 2013;16:1331–9. https://doi.org/10.1038/nn.3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Ljubojevic V, Luu P, Gill PR, Beckett LA, Takehara-Nishiuchi K, De Rosa E. Cholinergic modulation of frontoparietal cortical network dynamics supporting supramodal attention. J Neurosci. 2018;38:3988–4005. https://doi.org/10.1523/JNEUROSCI.2350-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Sajedin A, Menhaj MB, Vahabie A-H, Panzeri S, Esteky H. Cholinergic modulation promotes attentional modulation in primary visual cortex- a modeling study. Sci Rep. 2019;9:20186. https://doi.org/10.1038/s41598-019-56608-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Ollerenshaw DR, Zheng HJ, Millard DC, Wang Q, Stanley GB. The adaptive trade-off between detection and discrimination in cortical representations and behavior. Neuron. 2014;81:1152–64. https://doi.org/10.1016/j.neuron.2014.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Zheng HJV, Wang Q, Stanley GB. Adaptive shaping of cortical response selectivity in the vibrissa pathway. J Neurophysiol. 2015;113:3850–65. https://doi.org/10.1152/jn.00978.2014.

    Article  PubMed  Google Scholar 

  327. Schriver BJ, Bagdasarov S, Wang Q. Pupil-linked arousal modulates behavior in rats performing a whisker deflection direction discrimination task. J Neurophysiol. 2018;120:1655–70. https://doi.org/10.1152/jn.00290.2018.

    Article  PubMed  Google Scholar 

  328. McGinley MJ, David SV, McCormick DA. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron. 2015;87:179–92. https://doi.org/10.1016/j.neuron.2015.05.038.

    Article  CAS  PubMed  Google Scholar 

  329. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR. et al. Waking state: Rapid variations modulate neural and behavioral responses. Neuron. 2015;87:1143–61. https://doi.org/10.1016/j.neuron.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  330. Vinck M, Batista-Brito R, Knoblich U, Cardin JA. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron. 2015;86:740–54. https://doi.org/10.1016/j.neuron.2015.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat Commun. 2016;7:13289. https://doi.org/10.1038/ncomms13289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Lee CC, Kheradpezhouh E, Diamond ME, Arabzadeh E. State-dependent changes in perception and coding in the mouse somatosensory cortex. Cell Rep.2020;32:108197. https://doi.org/10.1016/j.celrep.2020.108197.

    Article  CAS  PubMed  Google Scholar 

  333. Muñoz W, Rudy B. Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol. 2014;26:149–60. https://doi.org/10.1016/j.conb.2014.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Kim JH, Jung AH, Jeong D, Choi I, Kim K, Shin S. et al. Selectivity of neuromodulatory projections from the basal forebrain and locus ceruleus to primary sensory cortices. J Neurosci. 2016;36:5314–27. https://doi.org/10.1523/JNEUROSCI.4333-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Kanashiro T, Ocker GK, Cohen MR, Doiron B. Attentional modulation of neuronal variability in circuit models of cortex. eLife. 2017;6:e23978. https://doi.org/10.7554/eLife.23978.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Ruff DA, Cohen MR. Simultaneous multi-area recordings suggest that attention improves performance by reshaping stimulus representations. Nat Neurosci. 2019;22:1669–76. https://doi.org/10.1038/s41593-019-0477-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Ferro D, Kempen Jv, Boyd M, Panzeri S, Thiele A. Directed information exchange between cortical layers in macaque v1 and v4 and its modulation by selective attention. Proc Natl Acad Sci. 2021;118. https://doi.org/10.1073/pnas.2022097118.

  338. McGaugh JL. THE AMYGDALA MODULATES THE CONSOLIDATION OF MEMORIES OF EMOTIONALLY AROUSING EXPERIENCES. Annu Rev Neurosci. 2004;27:1–28. https://doi.org/10.1146/annurev.neuro.27.070203.144157.

    Article  CAS  PubMed  Google Scholar 

  339. McIntyre CK, McGaugh JL, Williams CL. Interacting brain systems modulate memory consolidation. Neurosci Biobehav Rev. 2012;36:1750–62. https://doi.org/10.1016/j.neubiorev.2011.11.001.

    Article  PubMed  Google Scholar 

  340. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–4. https://doi.org/10.1038/nature12676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA. et al. A cortical circuit for gain control by behavioral state. Cell. 2014;156:1139–52. https://doi.org/10.1016/j.cell.2014.01.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Eggermann E, Kremer Y, Crochet S, Petersen CC. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep.2014;9:1654–60. https://doi.org/10.1016/j.celrep.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  344. Gasselin C, Hohl B, Vernet A, Crochet S, Petersen CC. Cell-type-specific nicotinic input disinhibits mouse barrel cortex during active sensing. Neuron. 2021;109:778–87. https://doi.org/10.1016/j.neuron.2020.12.018.

    Article  CAS  Google Scholar 

  345. Chen N, Sugihara H, Sur M. An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci. 2015;18:892–902. https://doi.org/10.1038/nn.4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Muñoz W, Tremblay R, Levenstein D, Rudy B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science. 2017;355:954–9. https://doi.org/10.1126/science.aag2599.

    Article  CAS  PubMed  Google Scholar 

  347. Hasselmo ME, Giocomo LM. Cholinergic modulation of cortical function. J Mol Neurosci. 2006;30:133–6. https://doi.org/10.1385/JMN:30:1:133.

    Article  CAS  PubMed  Google Scholar 

  348. Gulledge AT, Park SB, Kawaguchi Y, Stuart GJ. Heterogeneity of phasic cholinergic signaling in neocortical neurons. J Neurophysiol. 2007;97:2215–29. https://doi.org/10.1152/jn.00493.2006.

    Article  CAS  PubMed  Google Scholar 

  349. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42:33–84. https://doi.org/10.1016/S0165-0173(03)00143-7.

    Article  PubMed  Google Scholar 

  350. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Ann Rev Neurosci. 2005;28:403–50.

  351. Rodenkirch C, Liu Y, Schriver BJ, Wang Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat Neurosci. 2019;22:120–33. https://doi.org/10.1038/s41593-018-0283-1.

    Article  CAS  PubMed  Google Scholar 

  352. McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev. 2019;105:190–9. https://doi.org/10.1016/j.neubiorev.2019.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. McBurney-Lin J, Lu J, Zuo Y, Yang H. Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology. 2020;174:108151. https://doi.org/10.1016/j.neuropharm.2020.108151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. McCormick DA, Prince DA. Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol. 1988;59:978–96. https://doi.org/10.1152/jn.1988.59.3.978.

    Article  CAS  PubMed  Google Scholar 

  355. Pape H-C, McCormick DA. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature. 1989;340:715–8. https://doi.org/10.1038/340715a0.

    Article  CAS  PubMed  Google Scholar 

  356. Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci. 2012;15:1040–6. https://doi.org/10.1038/nn.3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, den Ouden HE, et al. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron. 2013;80:519–30. https://doi.org/10.1016/j.neuron.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  358. Lee T-W, Girolami M, Bell A, Sejnowski T. A unifying information-theoretic framework for independent component analysis. Computers Math Appl. 2000;39:1–21. https://doi.org/10.1016/S0898-1221(00)00101-2.

    Article  Google Scholar 

  359. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816–8. https://doi.org/10.1038/nn.3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Hikida T, Yawata S, Yamaguchi T, Danjo T, Sasaoka T, Wang Y. et al. Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc Natl Acad Sci. 2013;110:342–7. https://doi.org/10.1073/pnas.1220358110.

    Article  PubMed  Google Scholar 

  361. Stipanovich A, Valjent E, Matamales M, Nishi A, Ahn JH, Maroteaux M. et al. A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature. 2008;453:879–84. https://doi.org/10.1038/nature06994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Frank MJ, Fossella JA. Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology. 2011;36:133–52. https://doi.org/10.1038/npp.2010.96.

    Article  PubMed  Google Scholar 

  363. Jaskir A, Frank MJ. On the normative advantages of dopamine and striatal opponency for learning and choice. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.03.10.483879v1.abstract. Accessed March 13, 2022.

  364. Ito T, Murray JD. Multi-task representations in human cortex transform along a sensory-to-motor hierarchy, https://doi.org/10.1101/2021.11.29.470432. Company: Cold Spring Harbor Laboratory Distributor: Cold Spring Harbor Laboratory Label: Cold Spring Harbor Laboratory Section: New Results Type: article. (2021)

  365. Fine JM, Hayden BY. The whole prefrontal cortex is premotor cortex. Philos Trans R Soc B: Biol Sci. 2022;377:20200524. https://doi.org/10.1098/rstb.2020.0524.

    Article  Google Scholar 

  366. Harris KD, Shepherd GMG. The neocortical circuit: themes and variations. Nat Neurosci. 2015;18:170–81. https://doi.org/10.1038/nn.3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Hosp JA, Nolan HE, Luft AR. Topography and collateralization of dopaminergic projections to primary motor cortex in rats. Exp Brain Res. 2015;233:1365–75. https://doi.org/10.1007/s00221-015-4211-2.

    Article  CAS  PubMed  Google Scholar 

  368. Molina-Luna K, Pekanovic A, Röhrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti MS. et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS ONE. 2009;4:e7082. https://doi.org/10.1371/journal.pone.0007082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci. 2011;31:2481–7. https://doi.org/10.1523/JNEUROSCI.5411-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Gaspar P, Bloch B, Le Moine C. D1 and d2 receptor gene expression in the rat frontal cortex: Cellular localization in different classes of efferent neurons. Eur J Neurosci. 1995;7:1050–63. https://doi.org/10.1111/j.1460-9568.1995.tb01092.x.

    Article  CAS  PubMed  Google Scholar 

  371. Josselyn SA, Shi C, Carlezon WA, Neve RL, Nestler EJ, Davis M. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci. 2001;21:2404–12. https://doi.org/10.1523/JNEUROSCI.21-07-02404.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, et al. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci. 2006;9:475–7. https://doi.org/10.1038/nn1661.

    Article  CAS  PubMed  Google Scholar 

  373. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA. et al. Neuronal competition and selection during memory formation. Science. 2007;316:457–60. https://doi.org/10.1126/science.1139438.

    Article  CAS  PubMed  Google Scholar 

  374. McKay BM, Matthews EA, Oliveira FA, Disterhoft JF. Intrinsic neuronal excitability is reversibly altered by a single experience in fear conditioning. J Neurophysiol. 2009;102:2763–70. https://doi.org/10.1152/jn.00347.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  375. Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat Neurosci. 2009;12:1438–43. https://doi.org/10.1038/nn.2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HLL. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron. 2014;83:722–35. https://doi.org/10.1016/j.neuron.2014.07.017.

    Article  CAS  PubMed  Google Scholar 

  377. Gouty-Colomer LA, Hosseini B, Marcelo IM, Schreiber J, Slump DE, Yamaguchi S. et al. Arc expression identifies the lateral amygdala fear memory trace. Mol Psychiatry. 2016;21:364–75. https://doi.org/10.1038/mp.2015.18.

    Article  CAS  PubMed  Google Scholar 

  378. Rashid AJ, Yan C, Mercaldo V, Hsiang HLL, Park S, Cole CJ. et al. Competition between engrams influences fear memory formation and recall. Science. 2016;353:383–7. https://doi.org/10.1126/science.aaf0594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Josselyn SA, Frankland PW. Memory allocation: Mechanisms and function. Annu Rev Neurosci. 2018;41:389–413. https://doi.org/10.1146/annurev-neuro-080317-061956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Kim D, Samarth P, Feng F, Pare D, Nair SS. Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct Funct. 2016;221:2163–82. https://doi.org/10.1007/s00429-015-1037-4.

    Article  CAS  PubMed  Google Scholar 

  381. Morrison DJ, Rashid AJ, Yiu AP, Yan C, Frankland PW, Josselyn SA. Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol Learn Mem. 2016;135:91–9. https://doi.org/10.1016/j.nlm.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  382. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127–48.

    Article  CAS  PubMed  Google Scholar 

  383. Benito E, Barco A. CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci. 2010;33:230–40. https://doi.org/10.1016/j.tins.2010.02.001.

    Article  CAS  PubMed  Google Scholar 

  384. Adams JP, Dudek SM. Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci. 2005;6:737–43. https://doi.org/10.1038/nrn1749.

    Article  CAS  PubMed  Google Scholar 

  385. Lopez de Armentia M, Jancic D, Olivares R, Alarcon JM, Kandel ER, Barco A. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci. 2007;27:13909–13918. https://doi.org/10.1523/JNEUROSCI.3850-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.

    Article  PubMed  Google Scholar 

  387. Gershman SJ, Jones CE, Norman KA, Monfils M-H, Niv Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front Behav Neurosci. 2013;7:64.

  388. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science. 2007;315:961–6. https://doi.org/10.1126/science.1135801.

    Article  CAS  PubMed  Google Scholar 

  389. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science. 2007;317:94–9. https://doi.org/10.1126/science.1140263.

    Article  CAS  PubMed  Google Scholar 

  390. Bakker A, Kirwan CB, Miller M, Stark CEL. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science. 2008;319:1640–2. https://doi.org/10.1126/science.1152882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science. 2008;319:1260–4. https://doi.org/10.1126/science.1151120.

    Article  CAS  PubMed  Google Scholar 

  392. Moyer Jr. JR, Thompson LT, Disterhoft JF. Trace eyeblink conditioning increases CA1 excitability in a transient and learning-specific manner. J Neurosci. 1996;16:5536–46. https://doi.org/10.1523/JNEUROSCI.16-17-05536.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Kaczorowski CC, Disterhoft JF. Memory deficits are associated with impaired ability to modulate neuronal excitability in middle-aged mice. Learn Mem. 2009;16:362–6.

    Article  PubMed  PubMed Central  Google Scholar 

  394. Jancic D, Lopez de Armentia M, Valor LM, Olivares R, Barco A. Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex. 2009;19:2535–47. https://doi.org/10.1093/cercor/bhp004.

    Article  PubMed  Google Scholar 

  395. Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534:115–8. https://doi.org/10.1038/nature17955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Mankin EA, Sparks FT, Slayyeh B, Sutherland RJ, Leutgeb S, Leutgeb JK. Neuronal code for extended time in the hippocampus. Proc Natl Acad Sci. 2012;109:19462–7. https://doi.org/10.1073/pnas.1214107109.

    Article  PubMed  PubMed Central  Google Scholar 

  397. O’Reilly RC, Frank MJ. Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 2006;18:283–328. https://doi.org/10.1162/089976606775093909.

    Article  PubMed  Google Scholar 

  398. Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychological Rev. 2010;117:541–74. https://doi.org/10.1037/a0019077.

    Article  Google Scholar 

  399. Dayan P. How to set the switches on this thing. Curr Opin Neurobiol. 2012;22:1068–74.

    Article  CAS  PubMed  Google Scholar 

  400. Collins AGE, Frank MJ. Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Rev. 2013;120:190–229. https://doi.org/10.1037/a0030852.

    Article  Google Scholar 

  401. Chatham CH, Frank MJ, Badre D. Corticostriatal output gating during selection from working memory. Neuron. 2014;81:930–42. https://doi.org/10.1016/j.neuron.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  402. Rac-Lubashevsky R, Frank MJ. Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence. PLOS Comput Biol. 2021;17:e1008971. https://doi.org/10.1371/journal.pcbi.1008971.

    Article  CAS  PubMed  Google Scholar 

  403. Calderon CB, Verguts T, Frank MJ. Thunderstruck: The ACDC model of flexible sequences and rhythms in recurrent neural circuits. PLOS Comput Biol. 2022;18:e1009854. https://doi.org/10.1371/journal.pcbi.1009854.

    Article  CAS  PubMed  Google Scholar 

  404. Kriete T, Noelle DC, Cohen JD, O’Reilly RC. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proc Natl Acad Sci. 2013;110:16390–5. https://doi.org/10.1073/pnas.1303547110.

    Article  PubMed  Google Scholar 

  405. Badre D, Frank MJ. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: Evidence from fMRI. Cereb Cortex. 2012;22:527–36. https://doi.org/10.1093/cercor/bhr117.

    Article  PubMed  Google Scholar 

  406. Franklin NT, Frank MJ. Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning. PLoS Comput Biol. 2020;16:e1007720.

    Article  CAS  PubMed  Google Scholar 

  407. Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron. 2017;93:451–63. https://doi.org/10.1016/j.neuron.2016.12.040.

    Article  CAS  PubMed  Google Scholar 

  408. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic parkinson’s disease. N. Engl J Med. 1988;318:876–80.

    Article  CAS  PubMed  Google Scholar 

  409. Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science. 2004;306:1940–3. https://doi.org/10.1126/science.1102941.

    Article  CAS  PubMed  Google Scholar 

  410. Beeler JA, Frank MJ, McDaid J, Alexander E, Turkson S, Sol Bernandez M. et al. A role for dopamine-mediated learning in the pathophysiology and treatment of parkinson’s disease. Cell Rep.2012;2:1747–61. https://doi.org/10.1016/j.celrep.2012.11.014.

    Article  CAS  PubMed  Google Scholar 

  411. Maia TV, Frank MJ. An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry. 2017;81:52–66. https://doi.org/10.1016/j.biopsych.2016.05.021.

    Article  CAS  PubMed  Google Scholar 

  412. Gold JM, Waltz JA, Frank MJ. Effort cost computation in schizophrenia: A commentary on the recent literature. Biol Psychiatry. 2015;78:747–53. https://doi.org/10.1016/j.biopsych.2015.05.005.

    Article  PubMed  Google Scholar 

  413. Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M. The Behavioral Pharmacology of Effort-related Choice Behavior: Dopamine, Adenosine and Beyond. J Exp Anal Behav. 2012;97. https://doi.org/10.1901/jeab.2012.97-125.

  414. Plaisted, KC. Reduced generalization in autism: An alternative to weak central coherence. In: Burack JA, Charman T, Yirmiya N, Zelazo PR, editors. The Development of Autism, 152–71 (Routledge; 2001), 0 edn.

  415. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain Behav. 2003;2:255–67. https://doi.org/10.1034/j.1601-183X.2003.00037.x.

    Article  CAS  PubMed  Google Scholar 

  416. Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res. 2020;98:2130–47. https://doi.org/10.1002/jnr.24560.

    Article  CAS  PubMed  Google Scholar 

  417. Solomon M, Frank MJ, Smith AC, Ly S, Carter CS. Transitive inference in adults with autism spectrum disorders. Cogn, Affect, Behav Neurosci. 2011;11:437–49. https://doi.org/10.3758/s13415-011-0040-3.

    Article  PubMed  Google Scholar 

  418. Liu RG, Frank MJ. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures in reinforcement learning, https://doi.org/10.1101/2021.07.20.453122. Section: New Results Type: article. (2021)

  419. Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: Genetics and pathology. Annu Rev Pathol: Mechanisms Dis. 2015;10:111–44. https://doi.org/10.1146/annurev-pathol-012414-040405.

    Article  CAS  Google Scholar 

  420. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61. https://doi.org/10.1038/nm.4071.

    Article  CAS  PubMed  Google Scholar 

  421. Mottron L, Bzdok D. Autism spectrum heterogeneity: fact or artifact?. Mol Psychiatry. 2020;25:3178–85. https://doi.org/10.1038/s41380-020-0748-y.

    Article  PubMed  Google Scholar 

  422. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63. https://doi.org/10.1038/nrn3992.

    Article  CAS  PubMed  Google Scholar 

  423. Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile x syndrome. Nat Rev Neurosci. 2021;22:209–22. https://doi.org/10.1038/s41583-021-00432-0.

    Article  CAS  PubMed  Google Scholar 

  424. Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialog Clin Neurosci. 2017;19:353–71.

  425. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB, Moine H, Kooy RF. et al. Fragile x syndrome. Nat Rev Dis Prim. 2017;3:17065. https://doi.org/10.1038/nrdp.2017.65.

    Article  PubMed  Google Scholar 

  426. Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K. et al. Fragile x mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci. 1997;94:5395–400. https://doi.org/10.1073/pnas.94.10.5395.

    Article  CAS  PubMed  Google Scholar 

  427. Oliet SH, Malenka RC, Nicoll RA. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron. 1997;18:969–82. https://doi.org/10.1016/S0896-6273(00)80336-0.

    Article  CAS  PubMed  Google Scholar 

  428. Kemp N. Induction of LTD in the adult hippocampus by the synaptic activation of AMPA/kainate and metabotropic glutamate receptors. Neuropharmacology. 1999;38:495–504. https://doi.org/10.1016/S0028-3908(98)00222-6.

    Article  CAS  PubMed  Google Scholar 

  429. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile x mental retardation. Proc Natl Acad Sci. 2002;99:7746–50. https://doi.org/10.1073/pnas.122205699.

    Article  CAS  PubMed  Google Scholar 

  430. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile x mental retardation. Trends Neurosci. 2004;27:370–7. https://doi.org/10.1016/j.tins.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  431. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG. et al. Chronic pharmacological mGlu5 inhibition corrects fragile x in adult mice. Neuron. 2012;74:49–56. https://doi.org/10.1016/j.neuron.2012.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile x syndrome. Nat Rev Neurosci. 2015;16:595–605. https://doi.org/10.1038/nrn4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Asiminas A, Jackson AD, Louros SR, Till SM, Spano T, Dando O. et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of fragile x syndrome. Sci Transl Med. 2019;11:eaao0498. https://doi.org/10.1126/scitranslmed.aao0498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Sidorov MS, Auerbach BD, Bear MF. Fragile x mental retardation protein and synaptic plasticity. Mol Brain. 2013;6:15. https://doi.org/10.1186/1756-6606-6-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Contractor A, Klyachko VA, Portera-Cailliau C. Altered neuronal and circuit excitability in fragile x syndrome. Neuron. 2015;87:699–715. https://doi.org/10.1016/j.neuron.2015.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. He C, Portera-Cailliau C. The trouble with spines in fragile x syndrome: density, maturity and plasticity. Neuroscience. 2013;251:120–8. https://doi.org/10.1016/j.neuroscience.2012.03.049.

    Article  CAS  PubMed  Google Scholar 

  437. Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Developmental Neurobiol. 2017;77:393–404. https://doi.org/10.1002/dneu.22417.

    Article  Google Scholar 

  438. Bagni C, Zukin RS. A synaptic perspective of fragile x syndrome and autism spectrum disorders. Neuron. 2019;101:1070–88. https://doi.org/10.1016/j.neuron.2019.02.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Hinton V, Brown W, Wisniewski K, Rudelli R. Analysis of neocortex in three males with the fragile x syndrome. Am J Med Genet. 1991;41:289–94.

    Article  CAS  PubMed  Google Scholar 

  440. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ. et al. Abnormal dendritic spines in fragile x knockout mice: Maturation and pruning deficits. Proc Natl Acad Sci. 1997;94:5401–4. https://doi.org/10.1073/pnas.94.10.5401.

    Article  CAS  PubMed  Google Scholar 

  441. Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ. et al. Dendritic spine and dendritic field characteristics of layer v pyramidal neurons in the visual cortex of fragile-x knockout mice. Am J Med Genet. 2002;111:140–6. https://doi.org/10.1002/ajmg.10500.

    Article  PubMed  Google Scholar 

  442. Galvez R, Gopal AR, Greenough WT. Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile x mental retardation syndrome. Brain Res. 2003;971:83–9.

    Article  CAS  PubMed  Google Scholar 

  443. Galvez R, Greenough WT. Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile x mental retardation syndrome. Am J Med Genet Part A. 2005;135:155–60.

    Article  PubMed  Google Scholar 

  444. McKinney BC, Grossman AW, Elisseou NM, Greenough WT. Dendritic spine abnormalities in the occipital cortex of c57bl/6 fmr1 knockout mice. Am J Med Genet Part B: Neuropsychiatr Genet. 2005;136:98–102.

    Article  Google Scholar 

  445. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, et al. Reversible inhibition of psd-95 mrna translation by mir-125a, fmrp phosphorylation, and mglur signaling. Mol cell. 2011;42:673–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Ifrim MF, Williams KR, Bassell GJ. Single-molecule imaging of PSD-95 mRNA translation in dendrites and its dysregulation in a mouse model of fragile x syndrome. J Neurosci. 2015;35:7116–30. https://doi.org/10.1523/JNEUROSCI.2802-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. He Q, Nomura T, Xu J, Contractor A. The developmental switch in GABA polarity is delayed in fragile x mice. J Neurosci. 2014;34:446–50. https://doi.org/10.1523/JNEUROSCI.4447-13.2014.

    Article  CAS  PubMed  Google Scholar 

  448. D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA. et al. Decreased expression of the GABAA receptor in fragile x syndrome. Brain Res. 2006;1121:238–45. https://doi.org/10.1016/j.brainres.2006.08.115.

    Article  CAS  PubMed  Google Scholar 

  449. Kim SW, Cho KJ. Activity-dependent alterations in the sensitivity to BDNF-TrkB signaling may promote excessive dendritic arborization and spinogenesis in fragile x syndrome in order to compensate for compromised postsynaptic activity. Med Hypotheses. 2014;83:429–35. https://doi.org/10.1016/j.mehy.2014.07.007.

    Article  PubMed  Google Scholar 

  450. Su T, Fan HX, Jiang T, Sun WW, Den WY, Gao MM, et al. Early continuous inhibition of group 1 mglu signaling partially rescues dendritic spine abnormalities in the fmr1 knockout mouse model for fragile x syndrome. Psychopharmacology. 2011;215:291–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Hitchcock, Alexander More, and Megha Sehgal for providing feedback on this manuscript and for helpful discussions.

Funding

This work was supported by NIMH training grant T32MH115895 (PI’s: Frank, Badre, Moore), as well as NIMH R01 MH084840-08A1. Computing was supported by NIH Office of the Director grant S10OD025181. We have no disclosures to make.

Author information

Authors and Affiliations

Authors

Contributions

DNS and MJF determined the content and perspective. DNS drafted the manuscript. DNS and MJF edited and redrafted the manuscript.

Corresponding authors

Correspondence to Daniel N. Scott or Michael J. Frank.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, D.N., Frank, M.J. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacol. 48, 121–144 (2023). https://doi.org/10.1038/s41386-022-01374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01374-6