Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of neurotrophic factors in novel, rapid psychiatric treatments

Abstract

Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the excitatory glutamatergic neuronal synapse highlighting the effects of various psychiatric treatments on BDNF transport, release, and synthesis.

Similar content being viewed by others

References

  1. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317. https://doi.org/10.1146/annurev.ne.19.030196.001445

    Article  CAS  PubMed  Google Scholar 

  2. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 1999;22:295–318. https://doi.org/10.1146/annurev.neuro.22.1.295

    Article  CAS  PubMed  Google Scholar 

  3. Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J Neurosci. 1998;18:10231–40. https://doi.org/10.1523/JNEUROSCI.18-24-10231.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001;2:24–32. https://doi.org/10.1038/35049004

    Article  CAS  PubMed  Google Scholar 

  5. Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 2000;23:639–45. https://doi.org/10.1016/s0166-2236(00)01672-6

    Article  CAS  PubMed  Google Scholar 

  6. Tyler WJ, Pozzo-Miller LD. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci. 2001;21:4249–58. https://doi.org/10.1523/JNEUROSCI.21-12-04249.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease. Clin Sci (Lond). 2006;110:167–73. https://doi.org/10.1042/CS20050163

    Article  CAS  PubMed  Google Scholar 

  8. Duman RS. Neurotrophic factors and regulation of mood: role of exercise, diet and metabolism. Neurobiol Aging. 2005;26:88–93. https://doi.org/10.1016/j.neurobiolaging.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  9. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5:311–22. https://doi.org/10.1038/nrneurol.2009.54

    Article  CAS  PubMed  Google Scholar 

  11. Duman RS, Li N. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci. 2012;367:2475–84. https://doi.org/10.1098/rstb.2011.0357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anand A, Charney DS. Norepinephrine dysfunction in depression. J Clin Psychiatry. 2000;61:16–24.

    CAS  PubMed  Google Scholar 

  13. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P-F, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5. https://doi.org/10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4. https://doi.org/10.1016/S0006-3223(99)00230-9

    Article  CAS  PubMed  Google Scholar 

  15. Price RB, Nock MK, Charney DS, Mathew SJ. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol Psychiatry. 2009;66:522–6. https://doi.org/10.1016/j.biopsych.2009.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and Psychedelic-Assisted Psychotherapy. Am J Psychiatry. 2020;177:391–410. https://doi.org/10.1176/appi.ajp.2019.19010035

    Article  PubMed  Google Scholar 

  17. Deyama S, Bang E, Wohleb ES, Li XY, Kato T, Gerhard DM, et al. Role of Neuronal VEGF Signaling in the Prefrontal Cortex in the Rapid Antidepressant Effects of Ketamine. Am J Psychiatry. 2019;176:388–400. https://doi.org/10.1176/appi.ajp.2018.17121368

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav. 2020;188:172837. https://doi.org/10.1016/j.pbb.2019.172837

    Article  CAS  PubMed  Google Scholar 

  19. Deyama S, Kondo M, Shimada S, Kaneda K. IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine. Transl Psychiatry. 2022;12:178. https://doi.org/10.1038/s41398-022-01943-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin P-Y, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Reports. 2021;36. https://doi.org/10.1016/j.celrep.2021.109513

  21. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature. 2016;538:99–103. https://doi.org/10.1038/nature19766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barde YA. Trophic factors and neuronal survival. Neuron. 1989;2:1525–34. https://doi.org/10.1016/0896-6273(89)90040-8

    Article  CAS  PubMed  Google Scholar 

  23. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1982;1:549–53. https://doi.org/10.1002/j.1460-2075.1982.tb01207.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levi-Montalcini R, Cohen S. In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci USA. 1956;42:695–9. https://doi.org/10.1073/pnas.42.9.695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hallbook F, Ibanez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991;6:845–58. https://doi.org/10.1016/0896-6273(91)90180-8

    Article  CAS  PubMed  Google Scholar 

  26. Hohn A, Leibrock J, Bailey K, Barde YA. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990;344:339–41. https://doi.org/10.1038/344339a0

    Article  CAS  PubMed  Google Scholar 

  27. Ip NY, Ibanez CF, Nye SH, McClain J, Jones PF, Gies DR, et al. Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA. 1992;89:3060–4. https://doi.org/10.1073/pnas.89.7.3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, et al. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990;247:1446–51. https://doi.org/10.1126/science.247.4949.1446

    Article  CAS  PubMed  Google Scholar 

  29. Allard S, Leon WC, Pakavathkumar P, Bruno MA, Ribeiro-da-Silva A, Cuello AC. Impact of the NGF maturation and degradation pathway on the cortical cholinergic system phenotype. J Neurosci. 2012;32:2002–12. https://doi.org/10.1523/JNEUROSCI.1144-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hefti F, Weiner WJ. Nerve growth factor and Alzheimer’s disease. Ann Neurol. 1986;20:275–81. https://doi.org/10.1002/ana.410200302

    Article  CAS  PubMed  Google Scholar 

  31. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999;98:739–55. https://doi.org/10.1016/s0092-8674(00)81509-3

    Article  CAS  PubMed  Google Scholar 

  32. Rutherford LC, Nelson SB, Turrigiano GG. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron. 1998;21:521–30. https://doi.org/10.1016/s0896-6273(00)80563-2

    Article  CAS  PubMed  Google Scholar 

  33. Sherwood NT, Lo DC. Long-term enhancement of central synaptic transmission by chronic brain-derived neurotrophic factor treatment. J Neurosci. 1999;19:7025–36. https://doi.org/10.1523/JNEUROSCI.19-16-07025.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vicario-Abejon C, Collin C, McKay RD, Segal M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci. 1998;18:7256–71. https://doi.org/10.1523/JNEUROSCI.18-18-07256.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci USA. 1999;96:7723–30. https://doi.org/10.1073/pnas.96.14.7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4:299–309. https://doi.org/10.1038/nrn1078

    Article  CAS  PubMed  Google Scholar 

  37. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6:603–14. https://doi.org/10.1038/nrn1726

    Article  CAS  PubMed  Google Scholar 

  38. Chao MV, Hempstead BL. p75 and Trk: a two-receptor system. Trends Neurosci. 1995;18:321–6.

    Article  CAS  PubMed  Google Scholar 

  39. Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 1996;379:247–50. https://doi.org/10.1016/0014-5793(95)01520-5

    Article  CAS  PubMed  Google Scholar 

  40. Wiesmann C, Ultsch MH, Bass SH, de Vos AM. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature. 1999;401:184–8. https://doi.org/10.1038/43705

    Article  CAS  PubMed  Google Scholar 

  41. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991;252:554–8. https://doi.org/10.1126/science.1850549

    Article  CAS  PubMed  Google Scholar 

  42. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66:395–403. https://doi.org/10.1016/0092-8674(91)90628-c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liepinsh E, Ilag LL, Otting G, Ibanez CF. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 1997;16:4999–5005. https://doi.org/10.1093/emboj/16.16.4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrett GL, Bartlett PF. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc Natl Acad Sci USA. 1994;91:6501–5. https://doi.org/10.1073/pnas.91.14.6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383:716–9. https://doi.org/10.1038/383716a0

    Article  CAS  PubMed  Google Scholar 

  46. Frade JM, Rodriguez-Tebar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature. 1996;383:166–8. https://doi.org/10.1038/383166a0

    Article  CAS  PubMed  Google Scholar 

  47. Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM, Butcher LL, et al. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993;261:345–8. https://doi.org/10.1126/science.8332899

    Article  CAS  PubMed  Google Scholar 

  48. Bibel M, Hoppe E, Barde YA. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 1999;18:616–22. https://doi.org/10.1093/emboj/18.3.616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: a twisted affair. J Biol Chem. 2022;298:101568 https://doi.org/10.1016/j.jbc.2022.101568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA. 1993;90:7859–63. https://doi.org/10.1073/pnas.90.16.7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991;350:678–83. https://doi.org/10.1038/350678a0

    Article  CAS  PubMed  Google Scholar 

  52. Mischel PS, Smith SG, Vining ER, Valletta JS, Mobley WC, Reichardt LF. The extracellular domain of p75NTR is necessary to inhibit neurotrophin-3 signaling through TrkA. J Biol Chem. 2001;276:11294–301. https://doi.org/10.1074/jbc.M005132200

    Article  CAS  PubMed  Google Scholar 

  53. Verdi JM, Birren SJ, Ibanez CF, Persson H, Kaplan DR, Benedetti M, et al. p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron. 1994;12:733–45. https://doi.org/10.1016/0896-6273(94)90327-1

    Article  CAS  PubMed  Google Scholar 

  54. Vesa J, Kruttgen A, Shooter EM. p75 reduces TrkB tyrosine autophosphorylation in response to brain-derived neurotrophic factor and neurotrophin 4/5. J Biol Chem. 2000;275:24414–20. https://doi.org/10.1074/jbc.M001641200

    Article  CAS  PubMed  Google Scholar 

  55. Cunningham ME, Stephens RM, Kaplan DR, Greene LA. Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem. 1997;272:10957–67. https://doi.org/10.1074/jbc.272.16.10957

    Article  CAS  PubMed  Google Scholar 

  56. Middlemas DS, Meisenhelder J, Hunter T. Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor. J Biol Chem. 1994;269:5458–66.

    Article  CAS  PubMed  Google Scholar 

  57. Qian X, Riccio A, Zhang Y, Ginty DD. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron. 1998;21:1017–29. https://doi.org/10.1016/s0896-6273(00)80620-0

    Article  CAS  PubMed  Google Scholar 

  58. van der Geer P, Wiley S, Gish GD, Lai VK, Stephens R, White MF, et al. Identification of residues that control specific binding of the Shc phosphotyrosine-binding domain to phosphotyrosine sites. Proc Natl Acad Sci USA. 1996;93:963–8. https://doi.org/10.1073/pnas.93.3.963

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dikic I, Batzer AG, Blaikie P, Obermeier A, Ullrich A, Schlessinger J, et al. Shc binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem. 1995;270:15125–9. https://doi.org/10.1074/jbc.270.25.15125

    Article  CAS  PubMed  Google Scholar 

  60. Liu HY, Meakin SO. ShcB and ShcC activation by the Trk family of receptor tyrosine kinases. J Biol Chem. 2002;277:26046–56. https://doi.org/10.1074/jbc.M111659200

    Article  CAS  PubMed  Google Scholar 

  61. Atwal JK, Massie B, Miller FD, Kaplan DR. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron. 2000;27:265–77. https://doi.org/10.1016/s0896-6273(00)00035-0

    Article  CAS  PubMed  Google Scholar 

  62. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23. https://doi.org/10.1038/nrn3379

    Article  CAS  PubMed  Google Scholar 

  63. Gartner A, Polnau DG, Staiger V, Sciarretta C, Minichiello L, Thoenen H, et al. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J Neurosci. 2006;26:3496–504. https://doi.org/10.1523/JNEUROSCI.3792-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang YZ, He XP, Krishnamurthy K, McNamara JO. TrkB-Shc signaling protects against Hippocampal injury following status epilepticus. J Neurosci. 2019;39:4624–30. https://doi.org/10.1523/JNEUROSCI.2939-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  65. Duman RS. Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry. 2002;17:306–10. https://doi.org/10.1016/s0924-9338(02)00654-5

    Article  PubMed  Google Scholar 

  66. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA. 2002;99:467–72. https://doi.org/10.1073/pnas.012605299

    Article  CAS  PubMed  Google Scholar 

  67. Barco A, Alarcon JM, Kandel ER. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002;108:689–703. https://doi.org/10.1016/s0092-8674(02)00657-8

    Article  CAS  PubMed  Google Scholar 

  68. Kenchappa RS, Zampieri N, Chao MV, Barker PA, Teng HK, Hempstead BL, et al. Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron. 2006;50:219–32. https://doi.org/10.1016/j.neuron.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  69. Ryden M, Hempstead B, Ibanez CF. Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor. J Biol Chem. 1997;272:16322–8. https://doi.org/10.1074/jbc.272.26.16322

    Article  CAS  PubMed  Google Scholar 

  70. Hempstead BL. Deciphering proneurotrophin actions. Handb Exp Pharm. 2014;220:17–32. https://doi.org/10.1007/978-3-642-45106-5_2

    Article  CAS  Google Scholar 

  71. Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–8. https://doi.org/10.1126/science.1065057

    Article  CAS  PubMed  Google Scholar 

  72. Cabelli RJ, Hohn A, Shatz CJ. Inhibition of Ocular Dominance Column Formation by Infusion of NT-4/5 or BDNF. Science. 1995;267:1662–6. https://doi.org/10.1126/science.7886458

    Article  CAS  PubMed  Google Scholar 

  73. Cabelli RJ, Shelton DL, Segal RA, Shatz CJ. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron. 1997;19:63–76. https://doi.org/10.1016/s0896-6273(00)80348-7

    Article  CAS  PubMed  Google Scholar 

  74. Hanover JL, Huang ZJ, Tonegawa S, Stryker MP. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci. 1999;19:RC40. https://doi.org/10.1523/JNEUROSCI.19-22-j0003.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schildt S, Endres T, Lessmann V, Edelmann E. Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus. Neuropharmacology. 2013;71:247–54. https://doi.org/10.1016/j.neuropharm.2013.03.041

    Article  CAS  PubMed  Google Scholar 

  76. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci. 2002;22:7453–61. https://doi.org/10.1523/JNEUROSCI.22-17-07453.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA. 1995;92:8856–60. https://doi.org/10.1073/pnas.92.19.8856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267:1658–62. https://doi.org/10.1126/science.7886457

    Article  CAS  PubMed  Google Scholar 

  79. Lang SB, Stein V, Bonhoeffer T, Lohmann C. Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites. J Neurosci. 2007;27:1097–105. https://doi.org/10.1523/JNEUROSCI.3590-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci. 2002;22:1532–40. https://doi.org/10.1523/JNEUROSCI.22-05-01532.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci. 2010;13:302–9. https://doi.org/10.1038/nn.2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 2005;8:1069–77. https://doi.org/10.1038/nn1510

    Article  CAS  PubMed  Google Scholar 

  83. Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA. 2012;109:15924–9. https://doi.org/10.1073/pnas.1207767109

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bai YY, Ruan CS, Yang CR, Li JY, Kang ZL, Zhou L, et al. ProBDNF signaling regulates depression-like behaviors in rodents under chronic stress. Neuropsychopharmacology. 2016;41:2882–92. https://doi.org/10.1038/npp.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49. https://doi.org/10.1038/nm.4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101:239–44. https://doi.org/10.1016/j.jad.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  87. Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, et al. Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1256–60. https://doi.org/10.1016/j.pnpbp.2006.03.025

    Article  CAS  PubMed  Google Scholar 

  88. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260–5. https://doi.org/10.1016/s0006-3223(01)01083-6

    Article  CAS  PubMed  Google Scholar 

  89. Rantamaki T, Hendolin P, Kankaanpaa A, Mijatovic J, Piepponen P, Domenici E, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology. 2007;32:2152–62. https://doi.org/10.1038/sj.npp.1301345

    Article  CAS  PubMed  Google Scholar 

  90. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539–47. https://doi.org/10.1523/JNEUROSCI.15-11-07539.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. 1999;96:15239–44. https://doi.org/10.1073/pnas.96.26.15239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim WB, Cho JH. Encoding of contextual fear memory in hippocampal-amygdala circuit. Nat Commun. 2020;11:1382. https://doi.org/10.1038/s41467-020-15121-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87. https://doi.org/10.1038/nrn3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–24. https://doi.org/10.1038/nn1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev. 1991;12:118–34. https://doi.org/10.1210/edrv-12-2-118

    Article  CAS  PubMed  Google Scholar 

  96. Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15:1768–77. https://doi.org/10.1523/JNEUROSCI.15-03-01768.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rasmusson AM, Shi L, Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology. 2002;27:133–42. https://doi.org/10.1016/S0893-133X(02)00286-5

    Article  CAS  PubMed  Google Scholar 

  98. Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry. 2004;55:708–14. https://doi.org/10.1016/j.biopsych.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  99. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22:6810–8. https://doi.org/10.1523/JNEUROSCI.22-15-06810.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus. 1992;2:431–5. https://doi.org/10.1002/hipo.450020410

    Article  CAS  PubMed  Google Scholar 

  101. Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 1992;588:341–5. https://doi.org/10.1016/0006-8993(92)91597-8

    Article  CAS  PubMed  Google Scholar 

  102. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol. 2001;158:453–68. https://doi.org/10.1016/S0002-9440(10)63988-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161:1957–66. https://doi.org/10.1176/appi.ajp.161.11.1957

    Article  PubMed  Google Scholar 

  104. Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, et al. Smaller Hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry. 2018;83:244–53. https://doi.org/10.1016/j.biopsych.2017.09.006

    Article  PubMed  Google Scholar 

  105. Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327:863–6. https://doi.org/10.1126/science.1181886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69. https://doi.org/10.1016/s0092-8674(03)00035-7

    Article  CAS  PubMed  Google Scholar 

  107. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM. The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging. 2006;27:1834–7. https://doi.org/10.1016/j.neurobiolaging.2005.10.013

    Article  CAS  PubMed  Google Scholar 

  108. Jiang X, Xu K, Hoberman J, Tian F, Marko AJ, Waheed JF, et al. BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology. 2005;30:1353–61. https://doi.org/10.1038/sj.npp.1300703

    Article  CAS  PubMed  Google Scholar 

  109. Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005;58:307–14. https://doi.org/10.1016/j.biopsych.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  110. Chen ZY, Bath K, McEwen B, Hempstead B, Lee F. Impact of genetic variant BDNF (Val66Met) on brain structure and function. Novartis Found Symp. 2008;289:180–8. https://doi.org/10.1002/9780470751251.ch14. 8-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Giza JI, Kim J, Meyer HC, Anastasia A, Dincheva I, Zheng CI, et al. The BDNF Val66Met prodomain disassembles dendritic spines altering fear extinction circuitry and behavior. Neuron. 2018;99:1356. https://doi.org/10.1016/j.neuron.2018.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 2014;12:7 https://doi.org/10.1186/1741-7015-12-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Eisch AJ, Bolanos CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry. 2003;54:994–1005. https://doi.org/10.1016/j.biopsych.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  114. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311:864–8. https://doi.org/10.1126/science.1120972

    Article  CAS  PubMed  Google Scholar 

  115. Gao X, Zhuang FZ, Qin SJ, Zhou L, Wang Y, Shen QF, et al. Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway. Psychiatry Res. 2016;243:446–52. https://doi.org/10.1016/j.psychres.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  116. Luo J, Min S, Wei K, Li P, Dong J, Liu YF. Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats. J Anesth. 2011;25:657–65. https://doi.org/10.1007/s00540-011-1199-z

    Article  PubMed  Google Scholar 

  117. Neyazi A, Theilmann W, Brandt C, Rantamaki T, Matsui N, Rhein M, et al. P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Transl Psychiatry. 2018;8:25. https://doi.org/10.1038/s41398-017-0077-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang F, Luo J, Min S, Ren L, Qin P. Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats. Brain Res. 2016;1642:43–50. https://doi.org/10.1016/j.brainres.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  119. Zhu X, Hao X, Luo J, Min S, Xie F, Zhang F. Propofol inhibits inflammatory cytokine-mediated glutamate uptake dysfunction to alleviate learning/memory impairment in depressed rats undergoing electroconvulsive shock. Brain Res. 2015;1595:101–9. https://doi.org/10.1016/j.brainres.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  120. Zhu X, Li P, Hao X, Wei K, Min S, Luo J, et al. Ketamine-mediated alleviation of electroconvulsive shock-induced memory impairment is associated with the regulation of neuroinflammation and soluble amyloid-beta peptide in depressive-like rats. Neurosci Lett. 2015;599:32–7. https://doi.org/10.1016/j.neulet.2015.05.022

    Article  CAS  PubMed  Google Scholar 

  121. Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM. Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry. 2003;54:703–9. https://doi.org/10.1016/s0006-3223(03)00073-8

    Article  CAS  PubMed  Google Scholar 

  122. Jonckheere J, Deloulme JC, Dall’Igna G, Chauliac N, Pelluet A, Nguon AS, et al. Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: the essential role of neuronal survival. Brain Stimul. 2018;11:1336–47. https://doi.org/10.1016/j.brs.2018.08.001

    Article  PubMed  Google Scholar 

  123. Segawa M, Morinobu S, Matsumoto T, Fuchikami M, Yamawaki S. Electroconvulsive seizure, but not imipramine, rapidly up-regulates pro-BDNF and t-PA, leading to mature BDNF production, in the rat hippocampus. Int J Neuropsychopharmacol. 2013;16:339–50. https://doi.org/10.1017/S1461145712000053

    Article  CAS  PubMed  Google Scholar 

  124. Chen F, Ardalan M, Elfving B, Wegener G, Madsen TM, Nyengaard JR. Mitochondria are critical for BDNF-mediated synaptic and vascular plasticity of Hippocampus following repeated electroconvulsive seizures. Int J Neuropsychopharmacol. 2018;21:291–304. https://doi.org/10.1093/ijnp/pyx115

    Article  CAS  PubMed  Google Scholar 

  125. Enomoto S, Shimizu K, Nibuya M, Suzuki E, Nagata K, Kondo T. Activated brain-derived neurotrophic factor/TrkB signaling in rat dorsal and ventral hippocampi following 10-day electroconvulsive seizure treatment. Neurosci Lett. 2017;660:45–50. https://doi.org/10.1016/j.neulet.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  126. Hansen HH, Rantamaki TP, Larsen MH, Woldbye DP, Mikkelsen JD, Castren EH. Rapid activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway by electroconvulsive shock in the rat prefrontal cortex is not associated with TrkB neurotrophin receptor activation. Cell Mol Neurobiol. 2007;27:585–94. https://doi.org/10.1007/s10571-007-9145-1

    Article  CAS  PubMed  Google Scholar 

  127. Greene J, Banasr M, Lee B, Warner-Schmidt J, Duman RS. Vascular endothelial growth factor signaling is required for the behavioral actions of antidepressant treatment: pharmacological and cellular characterization. Neuropsychopharmacology. 2009;34:2459–68. https://doi.org/10.1038/npp.2009.68

    Article  CAS  PubMed  Google Scholar 

  128. Segi-Nishida E, Warner-Schmidt JL, Duman RS. Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus. Proc Natl Acad Sci USA. 2008;105:11352–7. https://doi.org/10.1073/pnas.0710858105

    Article  PubMed  PubMed Central  Google Scholar 

  129. Warner-Schmidt JL, Duman RS. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA. 2007;104:4647–52. https://doi.org/10.1073/pnas.0610282104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bocchio-Chiavetto L, Zanardini R, Bortolomasi M, Abate M, Segala M, Giacopuzzi M, et al. Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur Neuropsychopharmacol. 2006;16:620–4. https://doi.org/10.1016/j.euroneuro.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  131. Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship between Hippocampal volume, serum BDNF, and depression severity following electroconvulsive therapy in late-life depression. Neuropsychopharmacology. 2016;41:2741–8. https://doi.org/10.1038/npp.2016.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Psomiades M, Mondino M, Galvao F, Mandairon N, Nourredine M, Suaud-Chagny MF, et al. Serum mature BDNF level is associated with remission following ECT in treatment-resistant depression. Brain Sci. 2022;12. https://doi.org/10.3390/brainsci12020126

  133. van Zutphen EM, Rhebergen D, van Exel E, Oudega ML, Bouckaert F, Sienaert P, et al. Brain-derived neurotrophic factor as a possible predictor of electroconvulsive therapy outcome. Transl Psychiatry. 2019;9:155. https://doi.org/10.1038/s41398-019-0491-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Sci (N. Y, N. Y). 2010;329:959–64. https://doi.org/10.1126/science.1190287

    Article  CAS  Google Scholar 

  135. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7. https://doi.org/10.1523/JNEUROSCI.17-08-02921.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Widman AJ, McMahon LL. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc Natl Acad Sci USA. 2018;115:E3007–E16. https://doi.org/10.1073/pnas.1718883115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Garcia LSB, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:140–4. https://doi.org/10.1016/j.pnpbp.2007.07.027

    Article  CAS  Google Scholar 

  138. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11. https://doi.org/10.1038/mp.2017.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron. 2019;101:774–8. https://doi.org/10.1016/j.neuron.2019.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2014;18:pyu033. https://doi.org/10.1093/ijnp/pyu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci. 2013;33:6990–7002. https://doi.org/10.1523/JNEUROSCI.4998-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth. 2011;58:911–23. https://doi.org/10.1007/s12630-011-9560-0

    Article  PubMed  Google Scholar 

  143. Kim J-W, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behavioural Brain Res. 2020;380:112378. https://doi.org/10.1016/j.bbr.2019.112378

    Article  CAS  Google Scholar 

  144. Ren Z, Wang M, Aldhabi M, Zhang R, Liu Y, Liu S, et al. Low-dose S-ketamine exerts antidepressant-like effects via enhanced hippocampal synaptic plasticity in postpartum depression rats. Neurobiol Stress. 2022;16:100422. https://doi.org/10.1016/j.ynstr.2021.100422

    Article  CAS  PubMed  Google Scholar 

  145. Tizabi Y, Bhatti BH, Manaye KF, Das JR, Akinfiresoye L. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats. Neuroscience. 2012;213:72–80. https://doi.org/10.1016/j.neuroscience.2012.03.052

    Article  CAS  PubMed  Google Scholar 

  146. Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–500. https://doi.org/10.1523/JNEUROSCI.2213-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maeng S, Zarate CA Jr., Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52. https://doi.org/10.1016/j.biopsych.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  148. Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci. 2009;29:8688–97. https://doi.org/10.1523/JNEUROSCI.6078-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90. https://doi.org/10.1016/j.neuron.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi J-I, Hashimoto K, et al. Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharmacol Exp Therapeutics. 2017;361:9–16. https://doi.org/10.1124/jpet.116.239228

    Article  CAS  Google Scholar 

  151. Yang C, Shirayama Y, Zhang J-C, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632. https://doi.org/10.1038/tp.2015.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yao W, Cao Q, Luo S, He L, Yang C, Chen J, et al. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry. 2022;27:1618–29. https://doi.org/10.1038/s41380-021-01377-7

    Article  CAS  PubMed  Google Scholar 

  153. Zhang J-C, Li S-X, Hashimoto K. R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav. 2014;116:137–41. https://doi.org/10.1016/j.pbb.2013.11.033

    Article  CAS  PubMed  Google Scholar 

  154. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:92. https://doi.org/10.1186/s13041-020-00627-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chou D, Peng H-Y, Lin T-B, Lai C-Y, Hsieh M-C, Wen Y-C, et al. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 2018;139:1–12. https://doi.org/10.1016/j.neuropharm.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  156. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6. https://doi.org/10.1038/nature17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fukumoto K, Fogaça MV, Liu R-J, Duman C, Kato T, Li X-Y, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci USA. 2019;116:297–302. https://doi.org/10.1073/pnas.1814709116

    Article  CAS  PubMed  Google Scholar 

  158. Yamaguchi J-I, Toki H, Qu Y, Yang C, Koike H, Hashimoto K, et al. (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Neuropsychopharmacology. 2018;43:1900–7. https://doi.org/10.1038/s41386-018-0084-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shirayama Y, Hashimoto K. Effects of a single bilateral infusion of R-ketamine in the rat brain regions of a learned helplessness model of depression. Eur Arch Psychiatry Clin Neurosci. 2017;267:177–82. https://doi.org/10.1007/s00406-016-0718-1

    Article  PubMed  Google Scholar 

  160. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–313.e19. https://doi.org/10.1016/j.cell.2021.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu R-J, Lee FS, Li X-Y, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005. https://doi.org/10.1016/j.biopsych.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  162. Pivac N, Kim B, Nedic G, Joo YH, Kozaric-Kovacic D, Hong JP, et al. Ethnic differences in brain-derived neurotrophic factor Val66Met polymorphism in Croatian and Korean healthy participants. Croat Med J. 2009;50:43–8. https://doi.org/10.3325/cmj.2009.50.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen MH, Lin WC, Wu HJ, Cheng CM, Li CT, Hong CJ, et al. Antisuicidal effect, BDNF Val66Met polymorphism, and low-dose ketamine infusion: Reanalysis of adjunctive ketamine study of Taiwanese patients with treatment-resistant depression (AKSTP-TRD). J Affect Disord. 2019;251:162–9. https://doi.org/10.1016/j.jad.2019.03.075

    Article  CAS  PubMed  Google Scholar 

  164. Becker DE, Rosenberg M. Nitrous oxide and the inhalation anesthetics. Anesth Prog. 2008;55:124–30. https://doi.org/10.2344/0003-3006-55.4.124. quiz 31-2

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nagele P, Duma A, Kopec M, Gebara MA, Parsoei A, Walker M, et al. Nitrous oxide for treatment-resistant major depression: a proof-of-concept trial. Biol Psychiatry. 2015;78:10–8. https://doi.org/10.1016/j.biopsych.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  166. Nagele P, Palanca BJ, Gott B, Brown F, Barnes L, Nguyen T, et al. A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Sci Transl Med. 2021;13. https://doi.org/10.1126/scitranslmed.abe1376

  167. Nagele P, Zorumski CF, Conway C. Exploring nitrous oxide as treatment of mood disorders: basic concepts. J Clin Psychopharmacol. 2018;38:144–8. https://doi.org/10.1097/JCP.0000000000000837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rantamaki T. TrkB neurotrophin receptor at the core of antidepressant effects, but how? Cell Tissue Res. 2019;377:115–24. https://doi.org/10.1007/s00441-018-02985-6

    Article  PubMed  Google Scholar 

  169. Kotermanski SE, Wood JT, Johnson JW. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J Physiol. 2009;587:4589–604. https://doi.org/10.1113/jphysiol.2009.176297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mennerick S, Jevtovic-Todorovic V, Todorovic SM, Shen W, Olney JW, Zorumski CF. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci. 1998;18:9716–26. https://doi.org/10.1523/JNEUROSCI.18-23-09716.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kohtala S, Theilmann W, Rosenholm M, Penna L, Karabulut G, Uusitalo S, et al. Cortical Excitability and Activation of TrkB Signaling During Rebound Slow Oscillations Are Critical for Rapid Antidepressant Responses. Mol Neurobiol. 2019;56:4163–74. https://doi.org/10.1007/s12035-018-1364-6

    Article  CAS  PubMed  Google Scholar 

  172. De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2020705118

  173. Liu W, Li Q, Ye B, Cao H, Shen F, Xu Z, et al. Repeated nitrous oxide exposure exerts antidepressant-like effects through neuronal nitric oxide synthase activation in the medial prefrontal cortex. Front Psychiatry. 2020;11:837. https://doi.org/10.3389/fpsyt.2020.00837

    Article  PubMed  PubMed Central  Google Scholar 

  174. De Gregorio D, Comai S, Posa L, Gobbi G d-lysergic acid diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int J Mol Sci. 2016;17. https://doi.org/10.3390/ijms17111953

  175. Marek GJ, Aghajanian GK. LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharm Exp Ther. 1996;278:1373–82.

    CAS  Google Scholar 

  176. Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2 C drugs). Neuropharmacology. 2015;99:546–53. https://doi.org/10.1016/j.neuropharm.2015.08.034

    Article  CAS  PubMed  Google Scholar 

  177. Aghajanian GK, Marek GJ. Serotonin and hallucinogens. Neuropsychopharmacology. 1999;21:16S–23S. https://doi.org/10.1016/S0893-133X(98)00135-3

    Article  CAS  PubMed  Google Scholar 

  178. Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 2004;1023:134–40. https://doi.org/10.1016/j.brainres.2004.07.044

    Article  CAS  PubMed  Google Scholar 

  179. Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient Stimulation with Psychoplastogens Is Sufficient to Initiate Neuronal Growth. ACS Pharm Transl Sci. 2021;4:452–60. https://doi.org/10.1021/acsptsci.0c00065

    Article  CAS  Google Scholar 

  180. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82. https://doi.org/10.1016/j.celrep.2018.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nichols CD, Sanders-Bush E. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. J Neurochem. 2004;90:576–84. https://doi.org/10.1111/j.1471-4159.2004.02515.x

    Article  CAS  PubMed  Google Scholar 

  182. Tuvikene J, Pruunsild P, Orav E, Esvald EE, Timmusk T. AP-1 transcription factors mediate BDNF-positive feedback loop in cortical neurons. J Neurosci. 2016;36:1290–305. https://doi.org/10.1523/JNEUROSCI.3360-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M, El Rahimy Y, et al. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology. 2022;47:1188–98. https://doi.org/10.1038/s41386-022-01301-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nichols CD, Garcia EE, Sanders-Bush E. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Brain Res Mol Brain Res. 2003;111:182–8. https://doi.org/10.1016/s0169-328x(03)00029-9

    Article  CAS  PubMed  Google Scholar 

  185. Nichols CD, Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology. 2002;26:634–42. https://doi.org/10.1016/S0893-133X(01)00405-5

    Article  CAS  PubMed  Google Scholar 

  186. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2022489118

  187. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e4. https://doi.org/10.1016/j.neuron.2021.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B, Hansen HD, et al. A single dose of psilocybin increases synaptic density and decreases 5-HT(2 A) receptor density in the pig brain. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22020835

  189. Jefsen OH, Elfving B, Wegener G, Muller HK. Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J Psychopharmacol. 2021;35:483–93. https://doi.org/10.1177/0269881120959614

    Article  CAS  PubMed  Google Scholar 

  190. Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91. https://doi.org/10.1007/s00221-013-3579-0

    Article  CAS  PubMed  Google Scholar 

  191. Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halberstadt AL, et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry. 2011;68:71–8. https://doi.org/10.1001/archgenpsychiatry.2010.116

    Article  CAS  PubMed  Google Scholar 

  192. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97. https://doi.org/10.1177/0269881116675513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80. https://doi.org/10.1177/0269881116675512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Carhart-Harris RL, Bolstridge M, Day CMJ, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacol (Berl). 2018;235:399–408. https://doi.org/10.1007/s00213-017-4771-x

    Article  CAS  Google Scholar 

  195. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9. https://doi.org/10.1001/jamapsychiatry.2020.3285

    Article  PubMed  Google Scholar 

  196. Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci. 1997;17:2785–95. https://doi.org/10.1523/JNEUROSCI.17-08-02785.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–6. https://doi.org/10.1126/science.adf0435

    Article  CAS  PubMed  Google Scholar 

  198. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41. https://doi.org/10.1038/s41593-023-01316-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Boltaev U, Meyer Y, Tolibzoda F, Jacques T, Gassaway M, Xu Q, et al. Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci Signal. 2017;10. https://doi.org/10.1126/scisignal.aal1670

  200. Deecher DC, Teitler M, Soderlund DM, Bornmann WG, Kuehne ME, Glick SD. Mechanisms of action of ibogaine and harmaline congeners based on radioligand binding studies. Brain Res. 1992;571:242–7. https://doi.org/10.1016/0006-8993(92)90661-r

    Article  CAS  PubMed  Google Scholar 

  201. Mach RH, Smith CR, Childers SR. Ibogaine possesses a selective affinity for sigma 2 receptors. Life Sci. 1995;57:PL57–62. https://doi.org/10.1016/0024-3205(95)00301-l

    Article  CAS  PubMed  Google Scholar 

  202. Glick SD, Maisonneuve IM. Mechanisms of Antiaddictive Actions of Ibogainea. Ann NY Acad Sci. 1998;844:214–26. https://doi.org/10.1111/j.1749-6632.1998.tb08237.x

    Article  CAS  PubMed  Google Scholar 

  203. Popik P, Layer RT, Fossom LH, Benveniste M, Geter-Douglass B, Witkin JM, et al. NMDA antagonist properties of the putative antiaddictive drug, ibogaine. J Pharmacol Exp Therapeut. 1995;275:753–60.

    CAS  Google Scholar 

  204. Mash DC, Staley JK, Pablo JP, Holohean AM, Hackman JC, Davidoff RA. Properties of ibogaine and its principal metabolite (12-hydroxyibogamine) at the MK-801 binding site of the NMDA receptor complex. Neurosci Lett. 1995;192:53–6. https://doi.org/10.1016/0304-3940(95)11608-y

    Article  CAS  PubMed  Google Scholar 

  205. Pearl SM, Herrick-Davis K, Teitler M, Glick SD. Radioligand-binding study of noribogaine, a likely metabolite of ibogaine. Brain Res. 1995;675:342–4. https://doi.org/10.1016/0006-8993(95)00123-8

    Article  CAS  PubMed  Google Scholar 

  206. Glick SD, Maisonneuve IM, Szumlinski KK. Mechanisms of action of ibogaine: relevance to putative therapeutic effects and development of a safer iboga alkaloid congener. Alkaloids Chem Biol. 2001;56:39–53. https://doi.org/10.1016/s0099-9598(01)56006-x

    Article  CAS  PubMed  Google Scholar 

  207. He D-Y, McGough NNH, Ravindranathan A, Jeanblanc J, Logrip ML, Phamluong K, et al. Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption. J Neurosci. 2005;25:619–28. https://doi.org/10.1523/JNEUROSCI.3959-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Marton S, González B, Rodríguez-Bottero S, Miquel E, Martínez-Palma L, Pazos M, et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front Pharmacol. 2019;10:193. https://doi.org/10.3389/fphar.2019.00193

  209. He DY, Ron D. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J. 2006;20:2420–2. https://doi.org/10.1096/fj.06-6394fje

    Article  CAS  PubMed  Google Scholar 

  210. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9. https://doi.org/10.1038/s41586-020-3008-z

    Article  CAS  PubMed  Google Scholar 

  211. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharm Rev. 2021;73:202–77. https://doi.org/10.1124/pharmrev.120.000056

    Article  CAS  PubMed  Google Scholar 

  212. Chang Q, Hanania T, Mash DC, Maillet EL. Noribogaine reduces nicotine self-administration in rats. J Psychopharmacol. 2015;29:704–11. https://doi.org/10.1177/0269881115584461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Coleman JA, Yang D, Zhao Z, Wen P-C, Yoshioka C, Tajkhorshid E, et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature. 2019;569:141–5. https://doi.org/10.1038/s41586-019-1135-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jacobs MT, Zhang Y-W, Campbell SD, Rudnick G. Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter *. J Biol Chem. 2007;282:29441–7. https://doi.org/10.1074/jbc.M704456200

    Article  CAS  PubMed  Google Scholar 

  215. Baumann MH, Pablo JP, Ali SF, Rothman RB, Mash DC. Noribogaine (12-Hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine. Ann NY Acad Sci. 2000;914:354–68. https://doi.org/10.1111/j.1749-6632.2000.tb05210.x

    Article  CAS  PubMed  Google Scholar 

  216. Zubaran C, Shoaib M, Stolerman IP, Pablo J, Mash DC. Noribogaine generalization to the ibogaine stimulus: correlation with noribogaine concentration in rat brain. Neuropsychopharmacology. 1999;21:119–26. https://doi.org/10.1016/S0893-133X(99)00003-2

    Article  CAS  PubMed  Google Scholar 

  217. Rodrı́guez P, Urbanavicius J, Prieto JP, Fabius S, Reyes AL, Havel V, et al. A single administration of the atypical psychedelic ibogaine or its metabolite noribogaine induces an antidepressant-like effect in rats. ACS Chem Neurosci. 2020;11:1661–72. https://doi.org/10.1021/acschemneuro.0c00152

    Article  CAS  Google Scholar 

  218. Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol Psychiatry. 2014;19:791–800. https://doi.org/10.1038/mp.2013.105

    Article  CAS  PubMed  Google Scholar 

  219. Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimers Dement (N. Y). 2015;1:95–102. https://doi.org/10.1016/j.trci.2015.06.007

    Article  PubMed  Google Scholar 

  220. Mitra S, Behbahani H, Eriksdotter M. Innovative therapy for Alzheimer’s disease-with focus on biodelivery of NGF. Front Neurosci. 2019;13:38. https://doi.org/10.3389/fnins.2019.00038

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cussac D, Schaak S, Denis C, Paris H. alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J Biol Chem. 2002;277:19882–8. https://doi.org/10.1074/jbc.M110142200

    Article  CAS  PubMed  Google Scholar 

  222. Di Liberto V, Mudo G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology. 2019;152:67–77. https://doi.org/10.1016/j.neuropharm.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  223. Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA. 2001;98:3555–60. https://doi.org/10.1073/pnas.061020198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol. 1999;11:177–83. https://doi.org/10.1016/s0955-0674(99)80023-4

    Article  CAS  PubMed  Google Scholar 

  225. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, et al. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest. 2007;117:2445–58. https://doi.org/10.1172/JCI31901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999;402:884–8. https://doi.org/10.1038/47260

    Article  CAS  PubMed  Google Scholar 

  227. Shah BH, Catt KJ. GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci. 2004;27:48–53. https://doi.org/10.1016/j.tins.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  228. Wang W, Qiao Y, Li Z. New insights into modes of GPCR activation. Trends Pharm Sci. 2018;39:367–86. https://doi.org/10.1016/j.tips.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  229. Kalia LV, Gingrich JR, Salter MW. Src in synaptic transmission and plasticity. Oncogene. 2004;23:8007–16. https://doi.org/10.1038/sj.onc.1208158

    Article  CAS  PubMed  Google Scholar 

  230. Delcourt N, Thouvenot E, Chanrion B, Galeotti N, Jouin P, Bockaert J, et al. PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J. 2007;26:1542–51. https://doi.org/10.1038/sj.emboj.7601608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Mira E, Lacalle RA, Gonzalez MA, Gomez-Mouton C, Abad JL, Bernad A, et al. A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep. 2001;2:151–6. https://doi.org/10.1093/embo-reports/kve027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, et al. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. bioRxiv. 2023:2023.08.28.555210. https://doi.org/10.1101/2023.08.28.555210

  233. Luscher C, Huber KM. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron. 2010;65:445–59. https://doi.org/10.1016/j.neuron.2010.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA. 2002;99:7746–50. https://doi.org/10.1073/pnas.122205699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27. https://doi.org/10.1523/JNEUROSCI.3888-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG, et al. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci. 2012;15:431–40. https://doi.org/10.1038/nn.3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bhakar AL, Dolen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci. 2012;35:417–43. https://doi.org/10.1146/annurev-neuro-060909-153138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62. https://doi.org/10.1016/j.neuron.2007.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron. 2012;74:49–56. https://doi.org/10.1016/j.neuron.2012.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4:131ra51. https://doi.org/10.1126/scitranslmed.3003501

    Article  PubMed  PubMed Central  Google Scholar 

  241. Howard DM, Adams MJ, Shirali M, Clarke TK, Marioni RE, Davies G, et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat Commun. 2018;9:1470. https://doi.org/10.1038/s41467-018-03819-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Foster DJ, Conn PJ. Allosteric modulation of GPCRs: new insights and potential utility for treatment of Schizophrenia and other CNS disorders. Neuron. 2017;94:431–46. https://doi.org/10.1016/j.neuron.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41. https://doi.org/10.1016/j.neuropharm.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  244. Rook JM, Xiang Z, Lv X, Ghoshal A, Dickerson JW, Bridges TM, et al. Biased mGlu5-positive allosteric modulators provide in vivo efficacy without potentiating mGlu5 modulation of NMDAR currents. Neuron. 2015;86:1029–40. https://doi.org/10.1016/j.neuron.2015.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the critical review of this manuscript by Joshua Levitz.

Funding

This work was supported by the Pritzker Neuropsychiatric Disorders Research Consortium (FSL), Burroughs Wellcome Fund (JK), and NIH grants, NS126590 (FSL), MH123154 (FSL).

Author information

Authors and Affiliations

Authors

Contributions

JK, MJH, AKW contributed substantially to the drafting of the work. JK, FSL conceptualized and revised critically for important intellectual content. FSL provided final approval of the version to the published. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Francis S. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., He, M.J., Widmann, A.K. et al. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacol. 49, 227–245 (2024). https://doi.org/10.1038/s41386-023-01717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01717-x

This article is cited by

Search

Quick links