Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory

Abstract

The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to “tag” the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations of methods for poly(A) length measurement.
Fig. 2: Model of CPEB-mediated mRNA repression coupled to dendritic localization followed by local activation.

Similar content being viewed by others

References

  1. Kang H, Schuman EM. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996;273:1402–6.

    Article  CAS  PubMed  Google Scholar 

  2. Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell. 1997;91:927–38.

    Article  CAS  PubMed  Google Scholar 

  3. Frey U, Morris RG. Synaptic tagging and long-term potentiation. Nature. 1997;385:533–6.

    Article  CAS  PubMed  Google Scholar 

  4. Huber KM, Kayser MS, Bear MF. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288:1254–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 1994;79:617–27.

    Article  CAS  PubMed  Google Scholar 

  6. Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell. 2000;103:435–47.

    Article  CAS  PubMed  Google Scholar 

  7. Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD. Translational control of the embryonic cell cycle. Cell. 2002;109:473–83.

    Article  CAS  PubMed  Google Scholar 

  8. Afroz T, Skrisovska L, Belloc E, Guillen-Boixet J, Mendez R, Allain FH. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang YS, Kan MC, Lin CL, Richter JD. CPEB3 and CPEB4 in neurons: analysis of RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA. EMBO J. 2006;25:4865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, et al. CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biol Reprod. 2003;69:261–8.

    Article  CAS  PubMed  Google Scholar 

  11. Mendez R, Richter JD. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol. 2001;2:521–9.

    Article  CAS  PubMed  Google Scholar 

  12. Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol. 2022;23:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duran-Arque B, Canete M, Castellazzi CL, Bartomeu A, Ferrer-Caelles A, Reina O, et al. Comparative analyses of vertebrate CPEB proteins define two subfamilies with coordinated yet distinct functions in post-transcriptional gene regulation. Genome Biol. 2022;23:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang XP, Cooper NG. Comparative in silico analyses of cpeb1-4 with functional predictions. Bioinform Biol Insights. 2010;4:61–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guillén-Boixet J, Buzon V, Salvatella X, Méndez R. CPEB4 is regulated during cell cycle by ERK2/Cdk1-mediated phosphorylation and its assembly into liquid-like droplets. eLife. 2016;5:e19298.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Darnell JE, Philipson L, Wall R, Adesnik M. Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science. 1971;174:507–10.

    Article  CAS  PubMed  Google Scholar 

  17. Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 2003;4:223.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Merrick WC, Pavitt GD. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol. 2018;10:a033092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belloc E, Mendez R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature. 2008;452:1017–21.

    Article  CAS  PubMed  Google Scholar 

  20. Fukao A, Fujiwara T. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation. J Biochem. 2017;161:309–14.

    CAS  PubMed  Google Scholar 

  21. Pique M, Lopez JM, Foissac S, Guigo R, Mendez R. A combinatorial code for CPE-mediated translational control. Cell. 2008;132:434–48.

    Article  CAS  PubMed  Google Scholar 

  22. Rouhana L, Wang L, Buter N, Kwak JE, Schiltz CA, Gonzalez T, et al. Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA. 2005;11:1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell. 2004;119:641–51.

    Article  CAS  PubMed  Google Scholar 

  24. Mendez R, Murthy KG, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell. 2000;6:1253–9.

    Article  CAS  PubMed  Google Scholar 

  25. Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell. 2012;47:253–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burns DM, D’Ambrogio A, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 2011;473:105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell. 2006;24:173–83.

    Article  CAS  PubMed  Google Scholar 

  28. Igea A, Mendez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J. 2010;29:2182–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ogami K, Hosoda N, Funakoshi Y, Hoshino S. Antiproliferative protein Tob directly regulates c-myc proto-oncogene expression through cytoplasmic polyadenylation element-binding protein CPEB. Oncogene. 2014;33:55–64.

    Article  CAS  PubMed  Google Scholar 

  30. Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol. 2014;30:393–415.

  31. Weill L, Belloc E, Bava FA, Mendez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol. 2012;19:577–85.

    Article  CAS  PubMed  Google Scholar 

  32. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999;4:1017–27.

    Article  CAS  PubMed  Google Scholar 

  33. Jung MY, Lorenz L, Richter JD. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendez R, Barnard D, Richter JD. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 2002;21:1833–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Setoyama D, Yamashita M, Sagata N. Mechanism of degradation of CPEB during Xenopus oocyte maturation. Proc Natl Acad Sci USA. 2007;104:18001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suner C, Sibilio A, Martin J, Castellazzi CL, Reina O, Dotu I, et al. Macrophage inflammation resolution requires CPEB4-directed offsetting of mRNA degradation. Elife. 2022;11:e75873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuge H, Brownlee GG, Gershon PD, Richter JD. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res. 1998;26:3208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuge H, Richter JD. Cytoplasmic 3’ poly(A) addition induces 5’ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 1995;14:6301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sikorski PJ, Warminski M, Kubacka D, Ratajczak T, Nowis D, Kowalska J, et al. The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5’ cap modulates protein expression in living cells. Nucleic Acids Res. 2020;48:1607–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, et al. Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science. 2019;363:eaav0080.

    Article  CAS  PubMed  Google Scholar 

  41. Salles FJ, Richards WG, Strickland S. Assaying the polyadenylation state of mRNAs. Methods. 1999;17:38–45.

    Article  CAS  PubMed  Google Scholar 

  42. Du L, Richter JD. Activity-dependent polyadenylation in neurons. RNA. 2005;11:1340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parras A, Anta H, Santos-Galindo M, Swarup V, Elorza A, Nieto-Gonzalez JL, et al. Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing. Nature. 2018;560:441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parras A, de Diego-Garcia L, Alves M, Beamer E, Conte G, Jimenez-Mateos EM, et al. Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain. 2020;143:2139–53.

    Article  PubMed  Google Scholar 

  45. Pico S, Parras A, Santos-Galindo M, Pose-Utrilla J, Castro M, Fraga E, et al. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington’s disease. Sci Transl Med. 2021;13:eabe7104.

    Article  CAS  PubMed  Google Scholar 

  46. Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3’ end modifications. Mol Cell. 2014;53:1044–52.

    Article  CAS  PubMed  Google Scholar 

  47. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature. 2014;508:66–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Legnini I, Alles J, Karaiskos N, Ayoub S, Rajewsky N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods. 2019;16:879–86.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Nie H, Liu H, Lu F. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun. 2019;10:5292.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods. 2019;16:1297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim J, Lee M, Son A, Chang H, Kim VN. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 2016;30:1671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen PJ, Huang YS. CPEB2-eEF2 interaction impedes HIF-1alpha RNA translation. EMBO J. 2012;31:959–71.

    Article  PubMed  Google Scholar 

  53. Chen PJ, Weng JY, Hsu PH, Shew JY, Huang YS, Lee WH. NPGPx modulates CPEB2-controlled HIF-1alpha RNA translation in response to oxidative stress. Nucleic Acids Res. 2015;43:9393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron. 1998;21:1129–39.

    Article  CAS  PubMed  Google Scholar 

  55. Huang YS, Jung MY, Sarkissian M, Richter JD. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J. 2002;21:2139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang YS, Carson JH, Barbarese E, Richter JD. Facilitation of dendritic mRNA transport by CPEB. Genes Dev. 2003;17:638–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell. 2003;115:893–904.

    Article  CAS  PubMed  Google Scholar 

  58. Drisaldi B, Colnaghi L, Fioriti L, Rao N, Myers C, Snyder AM, et al. SUMOylation is an inhibitory constraint that regulates the prion-like aggregation and activity of CPEB3. Cell Rep. 2015;11:1694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P, et al. The persistence of hippocampal-based memory requires protein synthesis mediated by the prion-like protein CPEB3. Neuron. 2015;86:1433–48.

    Article  CAS  PubMed  Google Scholar 

  60. Novoa I, Gallego J, Ferreira PG, Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol. 2010;12:447–56.

    Article  CAS  PubMed  Google Scholar 

  61. Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, et al. Neuralized1 activates CPEB3: a function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. Cell. 2011;147:1369–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang CF, Huang YS. Calpain 2 activated through N-methyl-D-aspartic acid receptor signaling cleaves CPEB3 and abrogates CPEB3-repressed translation in neurons. Mol Cell Biol. 2012;32:3321–32.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem. 2004;11:318–27.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Berger-Sweeney J, Zearfoss NR, Richter JD. Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn Mem. 2006;13:4–7.

    Article  PubMed  Google Scholar 

  65. Lai YT, Chao HW, Lai AC, Lin SH, Chang YJ, Huang YS. CPEB2-activated PDGFRalpha mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J Biomed Sci. 2020;27:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lai YT, Su CK, Jiang ST, Chang YJ, Lai AC, Huang YS. Deficiency of CPEB2-confined choline acetyltransferase expression in the dorsal motor nucleus of vagus causes hyperactivated parasympathetic signaling-associated bronchoconstriction. J Neurosci. 2016;36:12661–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pascual R, Martin J, Salvador F, Reina O, Chanes V, Millanes-Romero A, et al. The RNA binding protein CPEB2 regulates hormone sensing in mammary gland development and luminal breast cancer. Sci Adv. 2020;6:eaax3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu WH, Yeh NH, Huang YS. CPEB2 activates GRASP1 mRNA translation and promotes AMPA receptor surface expression, long-term potentiation, and memory. Cell Rep. 2017;21:1783–94.

    Article  CAS  PubMed  Google Scholar 

  69. Chao HW, Tsai LY, Lu YL, Lin PY, Huang WH, Chou HJ, et al. Deletion of CPEB3 enhances hippocampus-dependent memory via increasing expressions of PSD95 and NMDA receptors. J Neurosci. 2013;33:17008–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsai LY, Chang YW, Lin PY, Chou HJ, Liu TJ, Lee PT, et al. CPEB4 knockout mice exhibit normal hippocampus-related synaptic plasticity and memory. PLoS One. 2013;8:e84978.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tseng CS, Chao HW, Huang HS, Huang YS. Olfactory-experience- and developmental-stage-dependent control of CPEB4 regulates c-Fos mRNA translation for granule cell survival. Cell Rep. 2017;21:2264–76.

    Article  CAS  PubMed  Google Scholar 

  72. Mansur F, Ivshina M, Gu W, Schaevitz L, Stackpole E, Gujja S, et al. Gld2-catalyzed 3’ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA. 2016;22:1492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Benyelles M, Episkopou H, O’Donohue MF, Kermasson L, Frange P, Poulain F, et al. Impaired telomere integrity and rRNA biogenesis in PARN-deficient patients and knock-out models. EMBO Mol Med. 2019;11:e10201.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci. 2021;22:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Richter JD, Coller J. Pausing on polyribosomes: make way for elongation in translational control. Cell. 2015;163:292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Udagawa T, Farny NG, Jakovcevski M, Kaphzan H, Alarcon JM, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shin J, Paek KY, Chikhaoui L, Jung S, Ponny S, Suzuki Y, et al. Oppositional poly(A) tail length regulation by FMRP and CPEB1. RNA. 2022;28:756–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tseng CS, Chou SJ, Huang YS. CPEB4-dependent neonate-born granule cells are required for olfactory discrimination. Front Behav Neurosci. 2019;13:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang WH, Chao HW, Tsai LY, Chung MH, Huang YS. Elevated activation of CaMKIIalpha in the CPEB3-knockout hippocampus impairs a specific form of NMDAR-dependent synaptic depotentiation. Front Cell Neurosci. 2014;8:367.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lu WH, Chao HW, Lin PY, Lin SH, Liu TH, Chen HW, et al. CPEB3-dowregulated Nr3c1 mRNA translation confers resilience to developing posttraumatic stress disorder-like behavior in fear-conditioned mice. Neuropsychopharmacology. 2021;46:1669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kruttner S, Stepien B, Noordermeer JN, Mommaas MA, Mechtler K, Dickson BJ, et al. Drosophila CPEB Orb2A mediates memory independent of Its RNA-binding domain. Neuron. 2012;76:383–95.

    Article  PubMed  Google Scholar 

  83. Majumdar A, Cesario WC, White-Grindley E, Jiang H, Ren F, Khan MR, et al. Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell. 2012;148:515–29.

    Article  CAS  PubMed  Google Scholar 

  84. Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 2010;140:421–35.

    Article  CAS  PubMed  Google Scholar 

  85. Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell. 2012;149:768–79.

    Article  CAS  PubMed  Google Scholar 

  86. Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:6357.

    Article  Google Scholar 

  87. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483:336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC. Widespread and extensive lengthening of 3’ UTRs in the mammalian brain. Genome Res. 2013;23:812–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bava FA, Eliscovich C, Ferreira PG, Minana B, Ben-Dov C, Guigo R, et al. CPEB1 coordinates alternative 3’-UTR formation with translational regulation. Nature. 2013;495:121–5.

    Article  CAS  PubMed  Google Scholar 

  90. Fontes MM, Guvenek A, Kawaguchi R, Zheng D, Huang A, Ho VM, et al. Activity-dependent regulation of alternative cleavage and polyadenylation during hippocampal long-term potentiation. Sci Rep. 2017;7:17377.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yang Y, Paul A, Bach TN, Huang ZJ, Zhang MQ. Single-cell alternative polyadenylation analysis delineates GABAergic neuron types. BMC Biol. 2021;19:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kuhn U, Menzies FM, et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell. 2012;149:538–53.

    Article  CAS  PubMed  Google Scholar 

  93. Arasaki Y, Li M, Akiya T, Nozawa I, Ezura Y, Hayata T. The RNA-binding protein Cpeb4 is a novel positive regulator of osteoclast differentiation. Biochem Biophys Res Commun. 2020;528:621–7.

    Article  CAS  PubMed  Google Scholar 

  94. Chao HW, Lai YT, Lu YL, Lin CL, Mai W, Huang YS. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kan MC, Oruganty-Das A, Cooper-Morgan A, Jin G, Swanger SA, Bassell GJ, et al. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion. Mol Cell Biol. 2010;30:5658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin CL, Evans V, Shen S, Xing Y, Richter JD. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA. 2010;16:338–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qu W, Jin H, Chen BP, Liu J, Li R, Guo W, et al. CPEB3 regulates neuron-specific alternative splicing and involves neurogenesis gene expression. Aging (Albany NY). 2020;13:2330–47.

    Article  PubMed  Google Scholar 

  98. Hornberg H, Holt C. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci. 2013;7:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sutton MA, Schuman EM. Dendritic protein synthesis, synaptic plasticity, and memory. Cell. 2006;127:49–58.

    Article  CAS  PubMed  Google Scholar 

  100. Pascual R, Segura-Morales C, Omerzu M, Bellora N, Belloc E, Castellazzi CL, et al. mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4. RNA. 2020;27:291–302.

    Article  PubMed  Google Scholar 

  101. Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun. 2012;3:675.

    Article  PubMed  Google Scholar 

  102. Edmonds M, Kopp DW. The occurrence of polyadenylate sequences in bacteria and yeast. Biochem Biophys Res Commun. 1970;41:1531–7.

    Article  CAS  PubMed  Google Scholar 

  103. Mescher A, Humphreys T. Activation of maternal mRNA in the absence of poly(A) formation in fertilised sea urchin eggs. Nature. 1974;249:138–9.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN, Hernandez I, et al. RNA stores tau reversibly in complex coacervates. PLoS Biol. 2017;15:e2002183.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Koren SA, Hamm MJ, Meier SE, Weiss BE, Nation GK, Chishti EA, et al. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol. 2019;137:571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA. 1997;94:5401–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ding Q, Sethna F, Wang H. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background. Behav Brain Res. 2014;271:72–78.

    Article  CAS  PubMed  Google Scholar 

  108. Paradee W, Melikian HE, Rasmussen DL, Kenneson A, Conn PJ, Warren ST. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience. 1999;94:185–92.

    Article  CAS  PubMed  Google Scholar 

  109. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16:595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Science and Technology Council [NSTC111-2311-B-001-020-MY3] and Academia Sinica to Y-SH, the FEDER/Spanish Ministry of Science, Innovation and Universities (PID2020-119533 GB-I00 to RM and PID2020-118937RB-I00 to MF), Worldwide Cancer Research Foundation (20_0284), World Cancer Research Fund International (2020_021), La Caixa Foundation (HR18_00302), and La Marató TV3 Foundation (2019_e0259) to RM and MF, and GM046779 and GM135087 to JDR. IRB is the recipient of a Severo Ochoa Award of Excellence from the Spanish Government. IRB and IDIBAPS are supported by the CERCA Program (Catalan Government).

Author information

Authors and Affiliations

Authors

Contributions

All authors co-wrote the manuscript and all authors edited the final draft.

Corresponding authors

Correspondence to Yi-Shuian Huang, Raul Mendez or Joel D. Richter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YS., Mendez, R., Fernandez, M. et al. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 28, 2728–2736 (2023). https://doi.org/10.1038/s41380-023-02088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02088-x

Search

Quick links