Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CaMKII: a central molecular organizer of synaptic plasticity, learning and memory

Abstract

Calcium–calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse–nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of CaMKII and its activation scheme.
Fig. 2: The hypothetical timescale of CaMKII signalling in dendritic spines.
Fig. 3: Activation of CaMKII in single dendritic spines.
Fig. 4: Activity-dependent CaMKII association changes the localization of CaMKAPs during long-term potentiation.
Fig. 5: Role of CaMKII binding to NMDA receptor subunit 2B in regulating AMPA receptors.

Similar content being viewed by others

References

  1. Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hell, J. W. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81, 249–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bayer, K. U. & Schulman, H. CaM kinase: still inspiring at 40. Neuron 103, 380–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, X. et al. Mass of the postsynaptic density and enumeration of three key molecules. Proc. Natl Acad. Sci. USA 102, 11551–11556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Erondu, N. E. & Kennedy, M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5, 3270–3277 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kennedy, M. B., Bennett, M. K. & Erondu, N. E. Biochemical and immunochemical evidence that the ‘major postsynaptic density protein’ is a subunit of a calmodulin-dependent protein kinase. Proc. Natl Acad. Sci. USA 80, 7357–7361 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, K., Saneyoshi, T., Hosokawa, T., Okamoto, K. & Hayashi, Y. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation. J. Neurochem. 139, 959–972 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Kelly, P. T., Shields, S., Conway, K., Yip, R. & Burgin, K. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J. Neurochem. 49, 1927–1940 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Coultrap, S. J. et al. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep. 6, 431–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Küry, S. et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am. J. Hum. Genet. 101, 768–788 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rhein, C. et al. Association of a CAMK2A genetic variant with logical memory performance and hippocampal volume in the elderly. Brain Res. Bull. 161, 13–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Chia, P. H. et al. A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. Elife 7, e32451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akita, T. et al. De novo variants in CAMK2A and CAMK2B cause neurodevelopmental disorders. Ann. Clin. Transl. Neurol. 5, 280–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chao, L. H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146, 732–745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Myers, J. B. et al. The CaMKII holoenzyme structure in activation-competent conformations. Nat. Commun. 8, 15742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bayer, K. U., Löhler, J., Schulman, H. & Harbers, K. Developmental expression of the CaM kinase II isoforms: ubiquitous γ- and δ-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Mol. Brain Res. 70, 147–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Borgesius, N. Z. et al. βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses. J. Neurosci. 31, 10141–10148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma, H. et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, X. et al. Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons. Neuron 109, 1013–1028.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenberg, O. S., Deindl, S., Sung, R. J., Nairn, A. C. & Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123, 849–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Hanson, P. I., Meyer, T., Stryer, L. & Schulman, H. Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Braun, A. P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Buard, I. et al. CaMKII ‘autonomy’ is required for initiating but not for maintaining neuronal long-term information storage. J. Neurosci. 30, 8214–8220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  27. De Koninck, P. & Schulman, H. Sensitivity of CaMKII to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  PubMed  Google Scholar 

  28. Meyer, T., Hanson, P. I., Stryer, L. & Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199–1202 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Fujii, H. et al. Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIα and calcineurin. Cell Rep. 3, 978–987 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Hanson, P. I. & Schulman, H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J. Biol. Chem. 267, 17216–17224 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Colbrans, R. J. & Soderling, T. R. Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J. Biol. Chem. 265, 11213–11219 (1990).

    Article  Google Scholar 

  32. Lisman, J. E. & Zhabotinsky, A. M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Urakubo, H., Sato, M., Ishii, S. & Kuroda, S. In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. Biophys. J. 106, 1414–1420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, S. J. R., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, J. Y. et al. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. Neuron 94, 800–808.e4 (2017). This work measures the activity of CaMKII in single dendritic spines with millisecond temporal resolution using the FRET sensor Camui. The CaMKII decay time constant was determined to be about 6 s; this time frame enables CaMKII to accumulate its activity over this period.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, H.-X., Otmakhov, N., Strack, S., Colbran, R. J. & Lisman, J. E. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J. Neurophysiol. 85, 1368–1376 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47.e5 (2017). This publication describes paAIP2, a photoinducible CaMKII inhibitor, and demonstrates that CaMKII activity during stimulation, but not after, is required for LTP induction and the formation of inhibitory avoidance memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukunaga, K., Stoppini, L., Miyamoto, E. & Muller, D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 268, 7863–7867 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Molloy, S. S. & Kennedy, M. B. Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc. Natl Acad. Sci. USA 88, 4756–4760 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanhueza, M. et al. Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J. Neurosci. 31, 9170–9178 (2011). This work links displacement of CaMKII from its binding site in the C terminus of the NMDAR GluN2B subunit to reversal of LTP. Accordingly, CaMKII binding to GluN2B is important during a rodent’s life for the normal development of synaptic strength.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tao, W. et al. Synaptic memory requires CaMKII. Elife 10, e60360 (2021). This work demonstrates that CaMKII activity is important for the normal development of synaptic strength, which might be in part due to binding of CaMKII to GluN2B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W. & Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Incontro, S. et al. The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nat. Commun. 9, 2069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saneyoshi, T. et al. Reciprocal activation within a kinase-effector complex underlying persistence of structural LTP. Neuron 102, 1199–1210.e6 (2019). This article presents a positive feedback loop formed by a reciprocally activating kinase–effector complex in dendritic spines, and this may enable the persistence and confinement of molecular memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, Y. et al. Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J. Neurosci. 27, 13843–13853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Özden, C. et al. CaMKII binds both substrates and effectors at the active site. Cell Rep. 40, 111064 (2022). This work resolves the crystal structure of several T-site-binding and S-site-binding peptides and finds that they essentially bind an overlapping region on CaMKII.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Takao, K. et al. Visualization of synaptic Ca2+/calmodulin-dependent protein kinase II activity in living neurons. J. Neurosci. 25, 3107–3112 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang, J. Y., Nakahata, Y., Hayano, Y. & Yasuda, R. Mechanisms of Ca2+/calmodulin-dependent kinase II activation in single dendritic spines. Nat. Commun. 10, 2784 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Coultrap, S. J., Buard, I., Kulbe, J. R., Dell’Acqua, M. L. & Bayer, K. U. CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin. J. Biol. Chem. 285, 17930–17937 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cook, S. G., Buonarati, O. R., Coultrap, S. J. & Bayer, K. U. CaMKII holoenzyme mechanisms that govern the LTP versus LTD decision. Sci. Adv. 7, 2300–2314 (2021).

    Article  Google Scholar 

  52. Ardestani, G., West, M. C., Maresca, T. J., Fissore, R. A. & Stratton, M. M. FRET-based sensor for CaMKII activity (FRESCA): a useful tool for assessing CaMKII activity in response to Ca2+ oscillations in live cells. J. Biol. Chem. 294, 11876–11891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabatini, B. L., Oertner, T. G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Pharris, M. C. et al. A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Comput. Biol. 15, e1006941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hanson, P. I., Kapiloff, M. S., Lou, L. L., Rosenfeld, M. G. & Schulman, H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3, 59–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Miller, S. G., Patton, B. L. & Kennedy, M. B. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1, 593–604 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Shaw, A. S., Kornev, A. P., Hu, J., Ahuja, L. G. & Taylor, S. S. Kinases and pseudokinases: lessons from RAF. Mol. Cell. Biol. 34, 1538–1546 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Robison, A. J. et al. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and α-actinin-2. J. Biol. Chem. 280, 35329–35336 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kojima, H. et al. The role of CaMKII-Tiam1 complex on learning and memory. Neurobiol. Learn. Mem. 166, 107070 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Bosch, M. et al. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82, 444–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Okamoto, K. I., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hudmon, A. et al. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J. Cell Biol. 171, 537 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Welsby, P. J. et al. A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J. Neurosci. 23, 10116–10121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang, X. et al. Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc. Natl Acad. Sci. USA 105, 341–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Okamoto, K., Narayanan, R., Lee, S. H., Murata, K. & Hayashi, Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl Acad. Sci. USA 104, 6418–6423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Leary, H., Lasda, E. & Bayer, K. U. CaMKIIβ association with the actin cytoskeleton is regulated by alternative splicing. Mol. Biol. Cell 17, 4656–4665 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jalan-Sakrikar, N., Bartlett, R. K., Baucum, A. J. 2nd & Colbran, R. J. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J. Biol. Chem. 287, 15275–15283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lemieux, M. et al. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. J. Cell Biol. 198, 1055–1073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Okuno, H. et al. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149, 886–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bingol, B. et al. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Hamilton, A. M. et al. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74, 1023–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Walikonis, R. S. et al. Densin-180 forms a ternary complex with the α-subunit of Ca2+/calmodulin-dependent protein kinase II and α-actinin. J. Neurosci. 21, 423–433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, X. et al. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus. J. Biol. Chem. 292, 17324–17336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Royer, L. et al. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. J. Biol. Chem. 293, 14798–14811 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castro-Rodrigues, A. F. et al. The Interaction between the Drosophila EAG potassium channel and the protein kinase CaMKII involves an extensive interface at the active site of the kinase. J. Mol. Biol. 430, 5029–5049 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chao, L. H. et al. Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nat. Struct. Mol. Biol. 17, 264–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hosokawa, T. et al. CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nat. Neurosci. 24, 777–785 (2021). This work shows that CaMKII undergoes LLPS with its substrate proteins in a manner depending on Ca2+–CaM binding and T286 autophosphorylation.

    Article  CAS  PubMed  Google Scholar 

  79. Cai, Q. et al. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Res. 31, 37–51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Perfitt, T. L. et al. Neuronal L-type calcium channel signaling to the nucleus requires a novel CaMKIIα-Shank3 interaction. J. Neurosci. 40, 2000–2014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeong, J., Li, Y. & Roche, K. W. CaMKII phosphorylation regulates synaptic enrichment of Shank3. eNeuro 8, ENEURO.0481-20.2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tao-Cheng, J. H. et al. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons. J. Neurosci. 31, 4834–4843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tao-Cheng, J. H. Activity-dependent redistribution of CaMKII in the postsynaptic compartment of hippocampal neurons. Mol. Brain 13, 53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tao-Cheng, J. H., Yang, Y., Reese, T. S. & Dosemeci, A. Differential distribution of Shank and GKAP at the postsynaptic density. PLoS ONE 10, e0118750 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C. & Hell, J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 96, 3239–3244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Cook, S. G., Goodell, D. J., Restrepo, S., Arnold, D. B. & Bayer, K. U. Simultaneous live imaging of multiple endogenous proteins reveals a mechanism for Alzheimer’s-related plasticity impairment. Cell Rep. 27, 658–665.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halt, A. R. et al. CaMKII binding to GluN2B is critical during memory consolidation. EMBO J. 31, 1203–1216 (2012). This publication provides the first evidence that CaMKII binding to GluN2B is important for memory formation, especially during the consolidation phase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bayer, K. U. et al. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J. Neurosci. 26, 1164–1174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ding, J.-D., Kennedy, M. B. & Weinberg, R. J. Subcellular organization of CaMKII in rat hippocampal pyramidal neurons. J. Comp. Neurol. 521, 3570–3583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, H. E., MacGillavry, H. D., Frost, N. A. & Blanpied, T. A. Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J. Neurosci. 34, 7600–7610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, K. et al. A temporary gating of actin remodeling during synaptic plasticity consists of the interplay between the kinase and structural functions of CaMKII. Neuron 87, 813–826 (2015). This work shows that autophosphorylation of multiple serines and threonines in the F-actin-binding region of CaMKII negatively affects the binding, thereby unbundling F-actin and allowing its modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y. P., Holbro, N. & Oertner, T. G. Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII. Proc. Natl Acad. Sci. USA 105, 12039–12044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharma, K., Fong, D. K. & Craig, A. M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci. 31, 702–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Gaertner, T. R. et al. Comparative analyses of the three-dimensional structures and enzymatic properties of α, β, γ, and δ isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem. 279, 12484–12494 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, S.-J. R. & Yasuda, R. Spatiotemporal regulation of signaling in and out of dendritic spines: CaMKII and Ras. Open Neurosci. J. 3, 117 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cook, S. G. et al. Analysis of the CaMKIIα and β splice-variant distribution among brain regions reveals isoform-specific differences in holoenzyme formation. Sci. Rep. 8, 1–15 (2018).

    Article  CAS  Google Scholar 

  98. Hoffman, L., Farley, M. M. & Waxham, M. N. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry 52, 1198–1207 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Q. et al. Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines. Proc. Natl Acad. Sci. USA 116, 18937–18942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin, Y. C. & Redmond, L. CaMKIIβ binding to stable F-actin in vivo regulates F-actin filament stability. Proc. Natl Acad. Sci. USA 105, 15791–15796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mikuni, T., Nishiyama, J., Sun, Y., Kamasawa, N. & Yasuda, R. High-throughput, high-resolution mapping of protein localization in mammalian brain by in vivo genome editing. Cell 165, 1803–1817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barria, A. & Malinow, R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Hamilton, A. M. et al. A dual role for the RhoGEF ephexin5 in regulation of dendritic spine outgrowth. Mol. Cell. Neurosci. 80, 66–74 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F. F., Malinow, R. & Cline, H. T. T. Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, L. et al. Ras and Rap signal bidirectional synaptic plasticity via distinct subcellular microdomains. Neuron 98, 783–800.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Woolfrey, K. M. et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat. Neurosci. 12, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58, 571–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fleming, I. N., Elliott, C. M., Buchanan, F. G., Downes, C. P. & Exton, J. H. Ca2+/calmodulin-dependent protein kinase II regulates tiam1 by reversible protein phosphorylation. J. Biol. Chem. 274, 12753–12758 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. El-Boustani, S. et al. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ashley, J. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172, 262–274.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pettit, D., Perlman, S. & Malinow, R. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266, 1881–1885 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Lledo, P. M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Patriarchi, T., Buonarati, O. R. & Hell, J. W. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca2+/CaMKII signaling. EMBO J. 37, e99771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pi, H. J. et al. CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc. Natl Acad. Sci. USA 107, 14437–14442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pi, H. J., Otmakhov, N., Lemelin, D., De Koninck, P. & Lisman, J. Autonomous CaMKII can promote either long-term potentiation or long-term depression, depending on the state of T305/T306 phosphorylation. J. Neurosci. 30, 8704–8709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barcomb, K. et al. Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength. FASEB J. 28, 3810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Qian, H. et al. Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons. Sci. Signal. 10, eaaf9659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bennett, M. K., Erondu, N. E. & Kennedy, M. B. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J. Biol. Chem. 2, 12735–12744 (1983).

    Article  Google Scholar 

  121. Park, J. et al. CaMKII phosphorylation of TARPγ-8 is a mediator of LTP and learning and memory. Neuron 92, 75–83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie, Z. et al. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56, 640–656 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Herring, B. E. & Nicoll, R. A. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc. Natl Acad. Sci. USA 113, 2264–2269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hedrick, N. G. N. G. et al. Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 538, 104–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Yamagata, Y. et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIα in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 29, 7607–7618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gustin, R. M. et al. Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Mol. Cell. Neurosci. 47, 286–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kool, M. J. et al. CAMK2-dependent signaling in neurons is essential for survival. J. Neurosci. 39, 5424–5439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Groth, R. D., Lindskog, M., Thiagarajan, T. C., Li, L. & Tsien, R. W. β Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons. Proc. Natl Acad. Sci. USA 108, 828–833 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Vest, R. S., Davies, K. D., O’Leary, H., Port, J. D. & Bayer, K. U. Dual mechanism of a natural CaMKII inhibitor. Mol. Biol. Cell 18, 5024–5033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ishida, A. et al. Critical amino acid residues of AIP, a highly specific inhibitory peptide of calmodulin-dependent protein kinase II. FEBS Lett. 427, 115–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Goncalves, J. et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc. Natl Acad. Sci. USA 117, 14503–14511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hruska, M., Cain, R. E. & Dalva, M. B. Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific. Nat. Commun. 13, 1–19 (2022).

    Article  Google Scholar 

  134. Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kristensen, A. S. et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Benke, T. A., Luthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci. 9, 602–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Sanderson, J. L., Gorski, J. A. & Dell’Acqua, M. L. NMDA receptor-dependent LTD requires transient synaptic incorporation of Ca2+-permeable AMPARs mediated by AKAP150-anchored PKA and Calcineurin. Neuron 89, 1000–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, H. K., Takamiya, K., He, K., Song, L. & Huganir, R. L. Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J. Neurophysiol. 103, 479–489 (2010).

    Article  PubMed  Google Scholar 

  141. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Diering, G. H., Heo, S., Hussain, N. K., Liu, B. & Huganir, R. L. Extensive phosphorylation of AMPA receptors in neurons. Proc. Natl Acad. Sci. USA 113, E4920–E4927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hosokawa, T., Mitsushima, D., Kaneko, R. & Hayashi, Y. Stoichiometry and phosphoisotypes of hippocampal AMPA-type glutamate receptor phosphorylation. Neuron 85, 60–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Sumioka, A., Yan, D. & Tomita, S. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66, 755–767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hafner, A. S. et al. Lengthening of the stargazin cytoplasmic tail increases synaptic transmission by promoting interaction to deeper domains of PSD-95. Neuron 86, 475–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA 99, 13902–13907 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Elias, G. M. et al. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52, 307–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Schluter, O. M., Xu, W. & Malenka, R. C. Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. Neuron 51, 99–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Opazo, P. et al. CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67, 239–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Sheng, N. et al. LTP requires postsynaptic PDZ-domain interactions with glutamate receptor/auxiliary protein complexes. Proc. Natl Acad. Sci. USA 115, 3948–3953 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tomita, S., Stein, V., Stocker, T. J., Nicoll, R. A. & Bredt, D. S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Zilly, F. E. et al. Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions. EMBO J. 30, 1209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sumioka, A. et al. PDZ binding of TARPγ-8 controls synaptic transmission but not synaptic plasticity. Nat. Neurosci. 14, 1410–1412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zeng, M. et al. Phase separation-mediated TARP/MAGUK complex condensation and AMPA receptor synaptic transmission. Neuron 104, 529–543.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lu, W., Isozaki, K., Roche, K. W. & Nicoll, R. A. Synaptic targeting of AMPA receptors is regulated by a CaMKII site in the first intracellular loop of GluA1. Proc. Natl Acad. Sci. USA 107, 22266–22271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goodell, D. J., Zaegel, V., Coultrap, S. J., Hell, J. W. & Bayer, K. U. DAPK1 mediates LTD by making CaMKII/GluN2B binding LTP specific. Cell Rep. 19, 2231–2243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Leonard, A. S. et al. Regulation of calcium/calmodulin-dependent protein kinase II docking to N-methyl-D-aspartate receptors by calcium/calmodulin and a-actinin. J. Biol. Chem. 277, 48441–48448 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Tullis, J. E. et al. GluN2B S1303 phosphorylation by CaMKII or DAPK1: no indication for involvement in ischemia or LTP. iScience 24, 103214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Strack, S., McNeill, R. B. & Colbran, R. J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 275, 23798–23806 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. O’Leary, H., Liu, W. H., Rorabaugh, J. M., Coultrap, S. J. & Bayer, K. U. Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-D-aspartate (NMDA) receptor subunit GluN2B. J. Biol. Chem. 286, 31272–31281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Mota Vieira, M. et al. An epilepsy-associated GRIN2A rare variant disrupts CaMKIIα phosphorylation of GluN2A and NMDA receptor trafficking. Cell Rep. 32, 108104 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Yong, X. L. H. et al. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Rep. 36, 109338 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Sanz-Clemente, A., Gray, J. A., Ogilvie, K. A., Nicoll, R. A. & Roche, K. W. Activated CaMKII couples GluN2B and casein kinase 2 to control synaptic NMDA receptors. Cell Rep. 3, 607–614 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Murakoshi, H., Wang, H. & Yasuda, R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472,100–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Harward, S. C. et al. Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538, 99–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Haditsch, U. et al. A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol. Cell. Neurosci. 41, 409–419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, I. H., Wang, H., Soderling, S. H. & Yasuda, R. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. Elife 3, 1–16 (2014).

    Article  Google Scholar 

  169. Saneyoshi, T. & Hayashi, Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton 69, 545–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Zhu, J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Harvey, C. D. C. D., Yasuda, R., Zhong, H. & Svoboda, K. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen, H. J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Aow, J. et al. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 16, 801–805 (2015).

    Google Scholar 

  175. Zhai, S., Ark, E. D. E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhu, Y. et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46, 905–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Tang, S. & Yasuda, R. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. Neuron 93, 1315–1324.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shibata, A. C. E. et al. Photoactivatable CaMKII induces synaptic plasticity in single synapses. Nat. Commun. 12, 1–15 (2021).

    Article  Google Scholar 

  179. Attardo, A., Fitzgerald, J. E. & Schnitzer, M. J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523, 592–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hedrick, N. G. & Yasuda, R. Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr. Opin. Neurobiol. 45, 193–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Rossetti, T. et al. Memory erasure experiments indicate a critical role of CaMKII in memory storage. Neuron 96, 207–216.e2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Adler, A., Zhao, R., Shin, M. E., Yasuda, R. & Gan, W. B. Somatostatin-expressing interneurons enable and maintain learning-dependent sequential activation of pyramidal neurons. Neuron 102, 202–216.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Thornquist, S. C., Langer, K., Zhang, S. X., Rogulja, D. & Crickmore, M. A. CaMKII measures the passage of time to coordinate behavior and motivational state. Neuron 105, 334–345.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Robison, A. J., Bartlett, R. K., Bass, M. A. & Colbran, R. J. Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and α -actinin. J. Biol. Chem. 280, 39316–39323 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Matt, L. et al. α-Actinin anchors PSD-95 at postsynaptic sites. Neuron 97, 1094–1109.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chowdhury, D. et al. Ca2+/calmodulin binding to PSD-95 mediates homeostatic synaptic scaling down. EMBO J. 37, 122–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Chowdhury, D. & Hell, J. W. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Research 7, 234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Steiner, P. et al. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron 60, 788–802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. U. Bayer and M. M. Stratton for critical reading.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ryohei Yasuda, Yasunori Hayashi or Johannes W. Hell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks N. Waxham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Protomers

Individual protein molecules in a protein complex.

Holoenzymes

Fully functional enzymes with all components present.

Phosphatases

Enzymes that remove phosphate moieties from phosphorylated proteins, lipids or other substrates.

Bistability

A property whereby a system can have two stable equilibrium states.

Bulk phase

Bulk phase signalling refers to signalling mediated by a population of CaMKII that is generally not anchored to CaMKAP. This population senses global calcium ions and transmits signals to diffusing substrates, as opposed to local signaling via CaMKAP–CaMKII complexes, which occur in nanodomains.

Glutamate uncaging

A microscopic technique that uses photons to release glutamate from light-sensitive precursors, often used to induce long-term potentiation in spines.

Decay time constant

The time when something decaying in exponential fashion becomes 1/e, where e is Napier’s constant.

Structural LTP

(sLTP). An activity-induced, lasting increase in spine size, mirroring electrically induced long-term potentiation (LTP).

Guanine nucleotide exchange factor

(GEF). A protein that activates small GTPases such as RAS and RHO by exchanging GDP on the small GTPases with GTP.

Condensates

Collection of molecules separated and condensed from the dilute phase through the process of liquid–liquid phase separation.

Apo state

The state in which an enzyme lacks one or more constituents required for its activity.

Ultrastructural distribution

Distribution of molecules at the nanometre scale, as determined by electron microscopy.

Exchange time

The time required for molecules in a compartment to be replaced with molecules in another compartment.

Hydrodynamic radius

Radius of a molecule or protein with its full hydration shell, formed by water molecules.

PDZ domain

A protein domain that includes a shallow groove that binds the carboxy termini of defined proteins that typically end with Ser/Thr-X-Val, with X being any of the 20 protein-forming amino acids.

Antiparallel coiled coil

A protein structure formed by two α-helices facing each other side by side in an antiparallel way; for example, by one helix oriented amino terminus to carboxy terminus and the adjacent helix oriented carboxy terminus to amino terminus.

Hebbian LTP

Long-term potentiation (LTP) that occurs when postsynaptic activity is paired with presynaptic activity.

Virus-like capsid

A protein structure that resembles the capsid structure that surrounds the viral genome.

Myristoylated

Bearing a lipid moiety known as a myristoyl side chain.

Consensus phosphorylation sites

Amino acid sequences that are recognized by specific protein kinases as substrate sites.

Half-maximal effective concentration

The concentration of a molecule at which it exhibits half-maximal efficacy with respect to, for example, enzymatic activity or binding interactions.

Retromer complex

The complex formed by the vacuole protein sorting gene products VPS26, VPS29 and VPS35.

Spine pruning

Loss of spines or reduction in spine number over time in the brain, especially during development but also later in life.

Inhibitory avoidance task

Behavioural task in which an animal is trained to avoid a situation or localization.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasuda, R., Hayashi, Y. & Hell, J.W. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 23, 666–682 (2022). https://doi.org/10.1038/s41583-022-00624-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00624-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing