Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Coordination of RNA modifications in the brain and beyond

Abstract

Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures and enzymatic processes of modifications discussed.
Fig. 2: Illustration of the three major types of coordination axes.
Fig. 3: Summary of the interaction of TRMT10A and FTO.
Fig. 4: Summary of the functions of TRMT112.

Similar content being viewed by others

References

  1. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    Article  CAS  PubMed  Google Scholar 

  2. Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–D235.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  4. Jung Y, Goldman D. Role of RNA modifications in brain and behavior. Genes Brain Behav. 2018;17:e12444.

    Article  CAS  PubMed  Google Scholar 

  5. Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, et al. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46:1412–23.

    Article  CAS  PubMed  Google Scholar 

  6. Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res. 2022;50:4464–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, et al. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun. 2021;12:4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem. 2019;148:325–47.

    Article  CAS  PubMed  Google Scholar 

  9. Song J, Yi C. Chemical modifications to RNA: A new layer of gene expression regulation. ACS Chem Biol. 2017;12:316–25.

    Article  CAS  PubMed  Google Scholar 

  10. Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA. 2018;24:1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ontiveros RJ, Shen H, Stoute J, Yanas A, Cui Y, Zhang Y, et al. Coordination of mRNA and tRNA methylations by TRMT10A. Proc Natl Acad Sci USA. 2020;117:7782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Zhang Y-C, Huang C, Shen H, Sun B, Cheng X, et al. m6a regulates neurogenesis and neuronal development by modulating histone methyltransferase ezh2. Genomics Proteom Bioinforma. 2019;17:154–68.

    Article  CAS  Google Scholar 

  15. Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, et al. The role of mRNA m6A methylation in the nervous system. Cell Biosci. 2019;9:66.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, Brönneke HS, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16:1042–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Wang M, Xie D, Huang Z, Zhang L, Yang Y, et al. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res. 2018;28:1050–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kan L, Ott S, Joseph B, Park ES, Dai W, Kleiner RE, et al. A neural m6A/Ythdf pathway is required for learning and memory in Drosophila. Nat Commun. 2021;12:1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma C, Chang M, Lv H, Zhang Z-W, Zhang W, He X, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19:68.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sevgi M, Rigoux L, Kühn AB, Mauer J, Schilbach L, Hess ME, et al. An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci. 2015;35:12584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Yu C, Guo M, Zheng X, Ali S, Huang H, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci. 2019;10:2355–63.

    Article  CAS  PubMed  Google Scholar 

  22. Oldmeadow C, Mossman D, Evans T-J, Holliday EG, Tooney PA, Cairns MJ, et al. Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. J Psychiatr Res. 2014;52:44–49.

    Article  PubMed  Google Scholar 

  23. McCaffrey TA, St Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D, et al. Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics. 2020;13:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xi Z, Xue Y, Zheng J, Liu X, Ma J, Liu Y. WTAP expression predicts poor prognosis in malignant glioma patients. J Mol Neurosci. 2016;60:131–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer. 2018;17:101.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kowalski-Chauvel A, Lacore MG, Arnauduc F, Delmas C, Toulas C, Cohen-Jonathan-Moyal E et al. The m6a RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem cells. Cancers (Basel). 2020;13. https://doi.org/10.3390/cancers13010040.

  27. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  28. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71:3971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, et al. The YTH domain is a novel RNA binding domain. J Biol Chem. 2010;285:14701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  31. Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22:54–66.

    Article  CAS  PubMed  Google Scholar 

  32. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lv Z, Xu T, Li R, Zheng D, Li Y, Li W, et al. Downregulation of m6A methyltransferase in the Hippocampus of Tyrobp-/- mice and implications for learning and memory deficits. Front Neurosci. 2022;16:739201.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoon K-J, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, et al. Temporal control of mammalian cortical neurogenesis by m6a methylation. Cell. 2017;171:877–889.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du K, Zhang Z, Zeng Z, Tang J, Lee T, Sun T. Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death Dis. 2021;12:700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ignatova VV, Stolz P, Kaiser S, Gustafsson TH, Lastres PR, Sanz-Moreno A, et al. The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34:715–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15:88–94.

    Article  CAS  PubMed  Google Scholar 

  42. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47:7719–33.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maden BE. Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol. 1986;189:681–99.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Liang Y, Lin R, Xiong Q, Yu P, Ma J, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes Dis. 2022;9:268–74.

    Article  CAS  PubMed  Google Scholar 

  46. Richard EM, Polla DL, Assir MZ, Contreras M, Shahzad M, Khan AA, et al. Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet. 2019;105:869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han B, Wei S, Li F, Zhang J, Li Z, Gao X. Decoding m6A mRNA methylation by reader proteins in cancer. Cancer Lett. 2021;518:256–65.

    Article  CAS  PubMed  Google Scholar 

  48. Liao S, Sun H, Xu C. YTH Domain: A Family of N6-methyladenosine (m6A) Readers. Genomics Proteom Bioinforma. 2018;16:99–107.

    Article  CAS  Google Scholar 

  49. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu S, Li G, Li Q, Zhang Q, Zhuo L, Chen X, et al. The roles and mechanisms of YTH domain-containing proteins in cancer development and progression. Am J Cancer Res. 2020;10:1068–84.

    PubMed  PubMed Central  Google Scholar 

  51. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai S, et al. YTH domain proteins: a family of m6a readers in cancer progression. Front Oncol. 2021;11:629560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38:857–871.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai X, Gonzalez G, Li L, Li J, You C, Miao W, et al. YTHDF2 binds to 5-methylcytosine in RNA and modulates the maturation of Ribosomal RNA. Anal Chem. 2020;92:1346–54.

    Article  CAS  PubMed  Google Scholar 

  56. Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27:1115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ben-Haim MS, Pinto Y, Moshitch-Moshkovitz S, Hershkovitz V, Kol N, Diamant-Levi T, et al. Dynamic regulation of N6,2’-O-dimethyladenosine (m6Am) in obesity. Nat Commun. 2021;12:7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71:973–985.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem. 2015;290:20734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: In the right place at the right time. Science. 2018;361:1336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shanmugam R, Fierer J, Kaiser S, Helm M, Jurkowski TP, Jeltsch A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Disco. 2015;1:15010.

    Article  CAS  Google Scholar 

  66. Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel). 2019;10:102.

    Article  CAS  PubMed  Google Scholar 

  67. Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900–5.

    Article  CAS  PubMed  Google Scholar 

  68. Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, et al. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 2007;21:261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet. 2012;90:847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, Rupp V, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet. 2012;90:856–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet. 2012;49:380–5.

    Article  CAS  PubMed  Google Scholar 

  72. Komara M, Al-Shamsi AM, Ben-Salem S, Ali BR, Al-Gazali L. A novel single-nucleotide deletion (c.1020delA) in NSUN2 causes intellectual disability in an emirati child. J Mol Neurosci. 2015;57:393–9.

    Article  CAS  PubMed  Google Scholar 

  73. Sun S, Chen L, Wang Y, Wang J, Li N, Wang X. Further delineation of autosomal recessive intellectual disability syndrome caused by homozygous variant of the NSUN2 gene in a chinese pedigree. Mol Genet Genom Med. 2020;8:e1518.

    Article  CAS  Google Scholar 

  74. George H, Bashir ZI, Hussain S. Impaired hippocampal NMDAR-LTP in a transgenic model of NSUN2-deficiency. Neurobiol Dis. 2022;163:105597.

    Article  CAS  PubMed  Google Scholar 

  75. Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14:2095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:2020–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci. 2021;46:790–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang X, Trebak F, Souza LAC, Shi J, Zhou T, Kehoe PG, et al. Small RNA modifications in Alzheimer’s disease. Neurobiol Dis. 2020;145:105058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature. 2013;495:474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell. 2014;157:636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell. 2014;157:651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol. 2017;14:1197–208.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, et al. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA. 2016;22:583–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, et al. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet. 2014;10:e1004424.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet. 2020;16:e1008330.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Manickam N, Joshi K, Bhatt MJ, Farabaugh PJ. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Nucleic Acids Res. 2016;44:1871–81.

    Article  PubMed  Google Scholar 

  87. Kernohan KD, Dyment DA, Pupavac M, Cramer Z, McBride A, Bernard G, et al. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum Mutat. 2017;38:511–6.

    Article  CAS  PubMed  Google Scholar 

  88. Chen H-H, Petty LE, Sha J, Zhao Y, Kuzma A, Valladares O, et al. Genetically regulated expression in late-onset Alzheimer’s disease implicates risk genes within known and novel loci. Transl Psychiatry. 2021;11:618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yamamoto K, Kuriu T, Matsumura K, Nagayasu K, Tsurusaki Y, Miyake N, et al. Multiple alterations in glutamatergic transmission and dopamine D2 receptor splicing in induced pluripotent stem cell-derived neurons from patients with familial schizophrenia. Transl Psychiatry. 2021;11:548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl Psychiatry. 2020;10:88.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cohn WE, Volkin E. Nucleoside-5′-phosphates from ribonucleic acid. Nature. 1951;167:483–4.

    Article  CAS  Google Scholar 

  92. Davis FF, Allen FW. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem. 1957;227:907–15.

    Article  CAS  PubMed  Google Scholar 

  93. Yu CT, Allen FW. Studies on an isomer of uridine isolated from ribonucleic acids. Biochim Biophys Acta. 1959;32:393–406.

    Article  CAS  PubMed  Google Scholar 

  94. Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 2017;14:1185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19:32–38.

    Article  CAS  PubMed  Google Scholar 

  96. Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515:143–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lovejoy AF, Riordan DP, Brown PO. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One. 2014;9:e110799.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li X, Zhu P, Ma S, Song J, Bai J, Sun F, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11:592–7.

    Article  CAS  PubMed  Google Scholar 

  101. Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet. 2020;54:309–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Heiss NS, Bächner D, Salowsky R, Kolb A, Kioschis P, Poustka A. Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. Genomics. 2000;67:153–63.

    Article  CAS  PubMed  Google Scholar 

  103. Wang C-C, Lo J-C, Chien C-T, Huang M-L. Spatially controlled expression of the Drosophila pseudouridine synthase RluA-1. Int J Dev Biol. 2011;55:223–7.

    Article  CAS  PubMed  Google Scholar 

  104. Song W, Ressl S, Tracey WD. Loss of pseudouridine synthases in the rlua family causes hypersensitive nociception in drosophila. G3 (Bethesda). 2020;10:4425–38.

    Article  CAS  PubMed  Google Scholar 

  105. Lee SH, Kim I, Chung BC. Increased urinary level of oxidized nucleosides in patients with mild-to-moderate Alzheimer’s disease. Clin Biochem. 2007;40:936–8.

    Article  CAS  PubMed  Google Scholar 

  106. Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve. 2005;32:1–18.

    Article  CAS  PubMed  Google Scholar 

  107. deLorimier E, Hinman MN, Copperman J, Datta K, Guenza M, Berglund JA. Pseudouridine modification inhibits muscleblind-like 1 (MBNL1) binding to CCUG repeats and minimally structured RNA through reduced RNA flexibility. J Biol Chem. 2017;292:4350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Karijolich J, Yu Y-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 2011;474:395–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Song J, Dong L, Sun H, Luo N, Huang Q, Li K et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol Cell. 2022. https://doi.org/10.1016/j.molcel.2022.11.011.

  110. Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289:35724–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ito S, Akamatsu Y, Noma A, Kimura S, Miyauchi K, Ikeuchi Y, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J Biol Chem. 2014;289:26201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tyc K, Steitz JA. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 1989;8:3113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sharma S, Langhendries J-L, Watzinger P, Kötter P, Entian K-D, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43:2242–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kruppa J, Zachau HG. Multiplicity of serine-specific transfer RNAs of brewer’s and baker’s yeast. Biochim Biophys Acta. 1972;277:499–512.

    Article  CAS  PubMed  Google Scholar 

  115. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175:1872.e24.

    Article  Google Scholar 

  116. Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583:638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82:2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Guo X-F, Wang X-H, Fu Y-L, Meng Q, Huang B-Y, Yang R, et al. Elevation of N-acetyltransferase 10 in hippocampal neurons mediates depression- and anxiety-like behaviors. Brain Res Bull. 2022;185:91–98.

    Article  CAS  PubMed  Google Scholar 

  119. Tao W, Tian G, Xu S, Li J, Zhang Z, Li J. NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell Int. 2021;21:413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zi J, Han Q, Gu S, McGrath M, Kane S, Song C, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020;10:598107.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yang C, Wu T, Zhang J, Liu J, Zhao K, Sun W, et al. Prognostic and immunological role of mRNA ac4C regulator NAT10 in pan-cancer: new territory for cancer research? Front Oncol. 2021;11:630417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018;28:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–51.

    Article  CAS  PubMed  Google Scholar 

  124. Boo SH, Ha H, Kim YK. m1A and m6A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 2022;40:111317.

    Article  CAS  PubMed  Google Scholar 

  125. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 2017;118:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA. 2019;116:6784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Flamand MN, Ke K, Tamming R, Meyer KD Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes Dev. 2022. https://doi.org/10.1101/gad.349983.122.

  128. Ohshiro T, Konno M, Asai A, Komoto Y, Yamagata A, Doki Y, et al. Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC. Sci Rep. 2021;11:19304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stephenson W, Razaghi R, Busan S, Weeks KM, Timp W, Smibert P Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genomics 2022;2. https://doi.org/10.1016/j.xgen.2022.100097.

  130. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15:201–6.

    Article  CAS  PubMed  Google Scholar 

  131. Xiang J-F, Yang Q, Liu C-X, Wu M, Chen L-L, Yang L. N6-Methyladenosines Modulate A-to-I RNA editing. Mol Cell. 2018;69:126.e6.

    Article  Google Scholar 

  132. Figaro S, Wacheul L, Schillewaert S, Graille M, Huvelle E, Mongeard R, et al. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol. 2012;32:2254–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, et al. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol. 2008;69:1266–77.

    Article  CAS  PubMed  Google Scholar 

  134. Ramos J, Fu D. The emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta Gene Regul Mech. 2019;1862:412–28.

    Article  CAS  PubMed  Google Scholar 

  135. Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry. 2022;27:3204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Deshpande KL, Katze JR. Characterization of cDNA encoding the human tRNA-guanine transglycosylase (TGT) catalytic subunit. Gene. 2001;265:205–12.

    Article  CAS  PubMed  Google Scholar 

  137. Chen Y-C, Kelly VP, Stachura SV, Garcia GA. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA. 2010;16:958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ehrenhofer-Murray AE Cross-Talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules. 2017;7. https://doi.org/10.3390/biom7010014.

  139. Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37. https://doi.org/10.15252/embj.201899777.

  140. Müller M, Legrand C, Tuorto F, Kelly VP, Atlasi Y, Lyko F, et al. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res. 2019;47:3711–27.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Franke B, Vermeulen SHHM, Steegers-Theunissen RPM, Coenen MJ, Schijvenaars MMVAP, Scheffer H, et al. An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res Part A Clin Mol Teratol. 2009;85:216–26.

    Article  CAS  Google Scholar 

  142. Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, et al. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA. 2012;18:1921–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guy MP, Phizicky EM. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA. 2015;21:61–74.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, Schwartz CE, et al. A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet. 2004;41:679–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel). 2019;10. https://doi.org/10.3390/genes10020141.

  147. Levi O, Arava YS. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 2021;49:432–43.

    Article  CAS  PubMed  Google Scholar 

  148. Levi O, Arava Y. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol. 2019;17:e3000274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhao X, Patton JR, Davis SL, Florence B, Ames SJ, Spanjaard RA. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell. 2004;15:549–58.

    Article  CAS  PubMed  Google Scholar 

  150. Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal. 2007;5:e006.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gamerdinger M, Manthey D, Behl C. Oestrogen receptor subtype-specific repression of calpain expression and calpain enzymatic activity in neuronal cells—implications for neuroprotection against Ca-mediated excitotoxicity. J Neurochem. 2006;97:57–68.

    Article  CAS  PubMed  Google Scholar 

  152. Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus. 2012;22:656–69.

    Article  CAS  PubMed  Google Scholar 

  153. Shaheen R, Han L, Faqeih E, Ewida N, Alobeid E, Phizicky EM, et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet. 2016;135:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu H-Y, Liu Y-Y, Yang F, Zhang L, Zhang F-L, Hu X, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48:3638–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zachau HG, Dütting D, Feldmann H. The structures of two serine transfer ribonucleic acids. Hoppe Seylers Z Physiol Chem. 1966;347:212–35.

    Article  CAS  PubMed  Google Scholar 

  157. Vilardo E, Amman F, Toth U, Kotter A, Helm M, Rossmanith W. Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Res. 2020;48:6157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Igoillo-Esteve M, Genin A, Lambert N, Désir J, Pirson I, Abdulkarim B, et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet. 2013;9:e1003888.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet. 2014;51:581–6.

    Article  CAS  PubMed  Google Scholar 

  160. Bourgeois G, Létoquart J, van Tran N, Graille M Trm112, a protein activator of methyltransferases modifying actors of the eukaryotic translational apparatus. Biomolecules. 2017;7. https://doi.org/10.3390/biom7010007.

  161. Fu D, Brophy JAN, Chan CTY, Atmore KA, Begley U, Paules RS, et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol. 2010;30:2449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bourgeois G, Marcoux J, Saliou J-M, Cianférani S, Graille M. Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Res. 2017;45:1971–82.

    CAS  PubMed  Google Scholar 

  163. Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, et al. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res. 2020;48:12310–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sepich-Poore C, Zheng Z, Schmitt E, Wen K, Zhang ZS, Cui X-L, et al. The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J Biol Chem. 2022;298:101590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Leismann J, Spagnuolo M, Pradhan M, Wacheul L, Vu MA, Musheev M, et al. The 18S ribosomal RNA m6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21:e49443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Monies D, Vågbø CB, Al-Owain M, Alhomaidi S, Alkuraya FS. Recessive truncating mutations in ALKBH8 cause intellectual disability and severe impairment of wobble uridine modification. Am J Hum Genet. 2019;104:1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Saad AK, Marafi D, Mitani T, Du H, Rafat K, Fatih JM, et al. Neurodevelopmental disorder in an Egyptian family with a biallelic ALKBH8 variant. Am J Med Genet A. 2021;185:1288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Doll A, Grzeschik KH. Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet Cell Genet. 2001;95:20–27.

    Article  CAS  PubMed  Google Scholar 

  169. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–D307.

    Article  CAS  PubMed  Google Scholar 

  170. Shen H, Gonskikh Y, Stoute J, Liu KF. Human DIMT1 generates N26,6A-dimethylation-containing small RNAs. J Biol Chem. 2021;297:101146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, et al. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. Mol Ther Nucleic Acids. 2021;26:161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rosace D, López J, Blanco S. Emerging roles of novel small non-coding regulatory RNAs in immunity and cancer. RNA Biol. 2020;17:1196–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc. 2014;136:11582–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Shen H, Ontiveros RJ, Owens MC, Liu MY, Ghanty U, Kohli RM, et al. TET-mediated 5-methylcytosine oxidation in tRNA promotes translation. J Bio Chem. 2021;296:100087.

    Article  CAS  Google Scholar 

  177. He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, et al. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021;28:62–70.

    Article  CAS  PubMed  Google Scholar 

  178. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol. 2005;25:3305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567:414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35:323–32.

    Article  CAS  PubMed  Google Scholar 

  182. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23:4061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15:57–67.

    Article  CAS  PubMed  Google Scholar 

  184. Xie Y, Castro-Hernández R, Sokpor G, Pham L, Narayanan R, Rosenbusch J, et al. RBM15 modulates the function of chromatin remodeling factor BAF155 through RNA methylation in developing cortex. Mol Neurobiol. 2019;56:7305–20.

    Article  CAS  PubMed  Google Scholar 

  185. Chen Y-T, Shen J-Y, Chen D-P, Wu C-F, Guo R, Zhang P-P, et al. Identification of cross-talk between m6A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. J Hematol Oncol. 2020;13:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen X, Li A, Sun B-F, Yang Y, Han Y-N, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article  CAS  PubMed  Google Scholar 

  187. Yang Y, Wang L, Han X, Yang W-L, Zhang M, Ma H-L, et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75:1188–1202.e11.

    Article  CAS  PubMed  Google Scholar 

  188. Yang X, Yang Y, Sun B-F, Chen Y-S, Xu J-W, Lai W-Y, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27:606–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bian J, Zhuo Z, Zhu J, Yang Z, Jiao Z, Li Y, et al. Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study. J Cell Mol Med. 2020;24:9280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhuo Z, Lu H, Zhu J, Hua R-X, Li Y, Yang Z, et al. METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study. Mol Ther Nucleic Acids. 2020;22:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sobczyk-Kopciol A, Broda G, Wojnar M, Kurjata P, Jakubczyk A, Klimkiewicz A, et al. Inverse association of the obesity predisposing FTO rs9939609 genotype with alcohol consumption and risk for alcohol dependence. Addiction. 2011;106:739–48.

    Article  PubMed  Google Scholar 

  192. Samaan Z, Anand SS, Zhang X, Desai D, Rivera M, Pare G, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry. 2013;18:1281–6.

    Article  CAS  PubMed  Google Scholar 

  193. Roffeei SN, Mohamed Z, Reynolds GP, Said MA, Hatim A, Mohamed EHM, et al. Association of FTO, LEPR and MTHFR gene polymorphisms with metabolic syndrome in schizophrenia patients receiving antipsychotics. Pharmacogenomics. 2014;15:477–85.

    Article  CAS  PubMed  Google Scholar 

  194. Song X, Pang L, Feng Y, Fan X, Li X, Zhang W, et al. Fat-mass and obesity-associated gene polymorphisms and weight gain after risperidone treatment in first episode schizophrenia. Behav Brain Funct. 2014;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zeng H, Li M, Liu J, Zhu J, Cheng J, Li Y, et al. YTHDF2 Gene rs3738067 A>G Polymorphism Decreases Neuroblastoma Risk in Chinese Children: Evidence From an Eight-Center Case-Control Study. Front Med (Lausanne). 2021;8:797195.

    Article  PubMed  Google Scholar 

  196. Qiu X, He H, Huang Y, Wang J, Xiao Y. Genome-wide identification of m6A-associated single-nucleotide polymorphisms in Parkinson’s disease. Neurosci Lett. 2020;737:135315.

    Article  CAS  PubMed  Google Scholar 

  197. Lin L, Deng C, Zhou C, Zhang X, Zhu J, Liu J, et al. NSUN2 gene rs13181449 C>T polymorphism reduces neuroblastoma risk. Gene. 2022;854:147120.

    Article  PubMed  Google Scholar 

  198. Dyment DA, O’Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, et al. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A. 2021;185:119–33.

    Article  CAS  PubMed  Google Scholar 

  199. Yıldırım M, Bektaş Ö, Tunçez E, Yeniay Süt N, Sayar Y, Öncül Ü, et al. A Case of Combined Oxidative Phosphorylation Deficiency 35 Associated with a Novel Missense Variant of the TRIT1 Gene. Mol Syndromol. 2022;13:139–45.

    Article  PubMed  Google Scholar 

  200. de Brouwer APM, Abou Jamra R, Körtel N, Soyris C, Polla DL, Safra M, et al. Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am J Hum Genet. 2018;103:1045–52.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Darvish H, Azcona LJ, Alehabib E, Jamali F, Tafakhori A, Ranji-Burachaloo S, et al. A novel PUS7 mutation causes intellectual disability with autistic and aggressive behaviors. Neurol Genet. 2019;5:e356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shaheen R, Tasak M, Maddirevula S, Abdel-Salam GMH, Sayed ISM, Alazami AM, et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum Genet. 2019;138:231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fang H, Zhang L, Xiao B, Long H, Yang L. Compound heterozygous mutations in PUS3 gene identified in a Chinese infant with severe epileptic encephalopathy and multiple malformations. Neurol Sci. 2020;41:465–7.

    Article  PubMed  Google Scholar 

  204. Nøstvik M, Kateta SM, Schönewolf-Greulich B, Afenjar A, Barth M, Boschann F, et al. Clinical and molecular delineation of PUS3-associated neurodevelopmental disorders. Clin Genet. 2021;100:628–33.

    Article  PubMed  Google Scholar 

  205. Abdelrahman HA, Al-Shamsi AM, Ali BR, Al-Gazali L. A null variant in PUS3 confirms its involvement in intellectual disability and further delineates the associated neurodevelopmental disease. Clin Genet. 2018;94:586–7.

    Article  CAS  PubMed  Google Scholar 

  206. Froukh T, Nafie O, Al Hait SAS, Laugwitz L, Sommerfeld J, Sturm M, et al. Genetic basis of neurodevelopmental disorders in 103 Jordanian families. Clin Genet. 2020;97:621–7.

    Article  CAS  PubMed  Google Scholar 

  207. Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry. 2017;74:293–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R35GM133721 and R01HL160726-01A1 to KFL and T32GM132039 to MCO), the American Cancer Society (RSG-22-064-01-RMC to KFL), the Damon Runyon Innovator Award to KFL, and the June Rothman Scott Biology Summer Research Fellowship to AYC. We would like to thank all members of Kathy Liu lab for their helpful discussions while writing this manuscript, especially Drs. Hui Shen and R. Jordan Ontiveros. Marvin was used for drawing, displaying, and characterizing chemical structures, substructures, and reactions in Fig. 1 (Marvin 22.13, 2022, ChemAxon; https://www.chemaxon.com). Figures 2 through 4 were created with BioRender.

Author information

Authors and Affiliations

Authors

Contributions

AYC and MCO wrote the manuscript. AYC, MCO, and KFL edited the manuscript.

Corresponding author

Correspondence to Kathy Fange Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A.Y., Owens, M.C. & Liu, K.F. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 28, 2737–2749 (2023). https://doi.org/10.1038/s41380-023-02083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02083-2

This article is cited by

Search

Quick links