Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carfilzomib-induced endothelial dysfunction, recovery of proteasome activity, and prediction of cardiovascular complications: a prospective study

Subjects

Abstract

Carfilzomib (CFZ) improves survival in relapsed/refractory multiple myeloma but is associated with cardiovascular adverse events (CVAEs). We prospectively investigated the effect of CFZ on endothelial function and associations with CVAEs. Forty-eight patients treated with Kd (CFZ 20/56 mg/m2 and dexamethasone) underwent serial endothelial function evaluation, using brachial artery flow-mediated dilatation (FMD) and 26S proteasome activity (PrA) measurement in PBMCs; patients were followed until disease progression or cycle 6 for a median of 10 months. FMD and PrA decreased acutely after the first dose (p < 0.01) and FMD decreased at cycles 3 and 6 compared to baseline (p ≤ 0.05). FMD changes were associated with CFZ-induced PrA changes (p < 0.05) and lower PrA recovery during first cycle was associated with more prominent FMD decrease (p = 0.034 for group interaction). During treatment, 25 patients developed Grade ≥3 CVAEs. Low baseline FMD (HR 2.57 lowest vs. higher tertiles, 95% CI 1.081–6.1) was an independent predictor of CVAEs. During treatment, an acute FMD decrease >40% at the end of first cycle was also independently associated with CVAEs (HR = 3.91, 95% CI 1.29–11.83). Kd treatment impairs endothelial function which is associated with PrA inhibition and recovery. Both pre- and posttreatment FMD predicted CFZ-related CVAEs supporting its role as a possible cardiovascular toxicity biomarker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart and timeline of the study.
Fig. 2: FMD and PrA were decreased and intercorrelated 2 h after first CFZ dose administration.
Fig. 3: Longitudinal FMD changes across prespecified pre-infusion timepoints during Kd treatment.
Fig. 4: Kaplan-Meier survival curves for the probability of CVAEs.

Similar content being viewed by others

References

  1. Ziogas DC, Terpos E, Kastritis E, Dimopoulos MA. An overview of the role of carfilzomib in the treatment of multiple myeloma. Expert Opin Pharmacother. 2017;18:1883–97.

    CAS  PubMed  Google Scholar 

  2. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2014;372:142–52.

    PubMed  Google Scholar 

  3. Dimopoulos MA, Goldschmidt H, Niesvizky R, Joshua D, Chng WJ, Oriol A, et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18:1327–37.

    CAS  PubMed  Google Scholar 

  4. Shah C, Bishnoi R, Jain A, Bejjanki H, Xiong S, Wang Y, et al. Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk Lymphoma. 2018;59:2557–69.

    CAS  PubMed  Google Scholar 

  5. Jain T, Narayanasamy H, Mikhael J, Reeder CB, Bergsagel PL, Mayo A, et al. Systolic dysfunction associated with carfilzomib use in patients with multiple myeloma. Blood Cancer J. 2017;7:642.

    PubMed  PubMed Central  Google Scholar 

  6. Bringhen S, Milan A, Ferri C, Wäsch R, Gay F, Larocca A, et al. Cardiovascular adverse events in modern myeloma therapy—incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA). Haematologica. 2018;103:1422–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen JH, Lenihan DJ, Phillips SE, Harrell SL, Cornell RF. Cardiac events during treatment with proteasome inhibitor therapy for multiple myeloma. Cardio-Oncology. 2017;3:4.

    PubMed  PubMed Central  Google Scholar 

  8. Dimopoulos MA, Roussou M, Gavriatopoulou M, Psimenou E, Ziogas D, Eleutherakis-Papaiakovou E, et al. Cardiac and renal complications of carfilzomib in patients with multiple myeloma. Blood Adv. 2017;1:449–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yui JC, Van Keer J, Weiss BM, Waxman AJ, Palmer MB, D’Agati VD, et al. Proteasome inhibitor associated thrombotic microangiopathy. Am J Hematol. 2016;91:E348–52.

    CAS  PubMed  Google Scholar 

  10. Poredos P, Jezovnik MK. Endothelial dysfunction and venous thrombosis. Angiology. 2017;69:564–7.

    PubMed  Google Scholar 

  11. Hobeika L, Self SE, Velez JC. Renal thrombotic microangiopathy and podocytopathy associated with the use of carfilzomib in a patient with multiple myeloma. BMC Nephrol. 2014;15:156.

    PubMed  PubMed Central  Google Scholar 

  12. Rosenthal A, Luthi J, Belohlavek M, Kortüm KM, Mookadam F, Mayo A, et al. Carfilzomib and the cardiorenal system in myeloma: an endothelial effect? Blood Cancer J. 2016;6:e384.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stangl K, Stangl V. The ubiquitin-proteasome pathway and endothelial (dys)function. Cardiovascular Res. 2009;85:281–90.

    Google Scholar 

  14. Meiners S, Ludwig A, Stangl V, Stangl K. Proteasome inhibitors: poisons and remedies. Med Res Rev. 2008;28:309–27.

    CAS  PubMed  Google Scholar 

  15. Brandes Ralf P. Endothelial dysfunction and hypertension. Hypertension. 2014;64:924–8.

    CAS  PubMed  Google Scholar 

  16. Lerman A, Zeiher, Andreas M. Endothelial function. Circulation. 2005;111:363–8.

    PubMed  Google Scholar 

  17. Chen-Scarabelli C, Corsetti G, Pasini E, Dioguardi FS, Sahni G, Narula J, et al. Spasmogenic effects of the proteasome inhibitor carfilzomib on coronary resistance, vascular tone and reactivity. EBioMedicine. 2017;21:206–12.

    PubMed  PubMed Central  Google Scholar 

  18. Lorenz M, Wilck N, Meiners S, Ludwig A, Baumann G, Stangl K, et al. Proteasome inhibition prevents experimentally-induced endothelial dysfunction. Life Sci. 2009;84:929–34.

    CAS  PubMed  Google Scholar 

  19. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768.

    PubMed  Google Scholar 

  20. Lendvai N, Tsakos I, Devlin SM, Schaffer WL, Hassoun H, Lesokhin AM, et al. Predictive biomarkers and practical considerations in the management of carfilzomib-associated cardiotoxicity. Leuk Lymphoma. 2018;59:1981–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iannaccone A, Bruno G, Ravera A, Gay F, Salvini M, Bringhen S, et al. Evaluation of cardiovascular toxicity associated with treatments containing proteasome inhibitors in multiple myeloma therapy. High Blood Press Cardiovasc Prev. 2018;25:209–18.

    CAS  PubMed  Google Scholar 

  22. Cornell RF, Ky B, Weiss BM, Dahm CN, Gupta DK, Du L, et al. Prospective study of cardiac events during proteasome inhibitor therapy for relapsed multiple myeloma. J Clin Oncol. 2019;37:1946–55.

    CAS  PubMed  Google Scholar 

  23. Stamatelopoulos K, Georgiopoulos G, Athanasouli F, Nikolaou PE, Lykka M, Roussou M, et al. Reactive vasodilation predicts mortality in primary systemic light-chain amyloidosis. Circ Res. 2019;125:744–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    CAS  PubMed  Google Scholar 

  25. Joannides R, Haefeli WE, Linder L, Richard V, Bakkali EH, Thuillez C, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995;91:1314–9.

    CAS  PubMed  Google Scholar 

  26. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol. 2002;90:40l–8l.

    CAS  PubMed  Google Scholar 

  27. Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994;24:1468–74.

    CAS  PubMed  Google Scholar 

  28. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

    PubMed  Google Scholar 

  29. Mancini GB, Yeoh E, Abbott D, Chan S. Validation of an automated method for assessing brachial artery endothelial dysfunction. Can J Cardiol. 2002;18:259–62.

    PubMed  Google Scholar 

  30. Preik M, Lauer T, Heiss C, Tabery S, Strauer BE, Kelm M. Automated ultrasonic measurement of human arteries for the determination of endothelial function. Ultraschall Med. 2000;21:195–8.

    CAS  PubMed  Google Scholar 

  31. Tsakiri EN, Terpos E, Papanagnou ED, Kastritis E, Brieudes V, Halabalaki M, et al. Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Sci Rep. 2017;7:17802.

    PubMed  PubMed Central  Google Scholar 

  32. Papanagnou ED, Terpos E, Kastritis E, Papassideri IS, Tsitsilonis OE, Dimopoulos MA, et al. Molecular responses to therapeutic proteasome inhibitors in multiple myeloma patients are donor-, cell type- and drug-dependent. Oncotarget. 2018;9:17797–809.

    PubMed  PubMed Central  Google Scholar 

  33. Tsakiri EN, Sykiotis GP, Papassideri IS, Gorgoulis VG, Bohmann D, Trougakos IP. Differential regulation of proteasome functionality in reproductive vs. somatic tissues of Drosophila during aging or oxidative stress. Faseb J. 2013;27:2407–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176–81.

    PubMed  Google Scholar 

  35. Fotiou D, Roussou M, Gakiopoulou C, Psimenou E, Gavriatopoulou M, Migkou M, et al. Carfilzomib associated renal toxicity is common and unpredictable: a comprehensive analysis of 114 multiple myeloma patients. Blood Cancer J. 2020;10:109. https://doi.org/10.1038/s41408-020-00381-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berenson JR, Cartmell A, Bessudo A, Lyons RM, Harb W, Tzachanis D. et al. CHAMPION-1: a phase 1/2 study of once-weekly carfilzomib and dexamethasone for relapsed or refractory multiple myeloma. Blood. 2016;127:3360–8. https://doi.org/10.1182/blood-2015-11-683854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Efentakis P, Kremastiotis G, Varela A, Nikolaou PE, Papanagnou ED, Davos CH, et al. Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood. 2019;133:710–23.

    CAS  PubMed  Google Scholar 

  38. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–69.

    CAS  PubMed  Google Scholar 

  39. Bonetti Piero O, Lerman Lilach O, Lerman A. Endothelial dysfunction. Arteriosclerosis, Thrombosis, Vasc Biol. 2003;23:168–75.

    CAS  Google Scholar 

  40. Migliacci R, Becattini C, Pesavento R, Davi G, Vedovati MC, Guglielmini G, et al. Endothelial dysfunction in patients with spontaneous venous thromboembolism. Haematologica. 2007;92:812–8.

    CAS  PubMed  Google Scholar 

  41. Gavazzoni M, Lombardi CM, Vizzardi E, Gorga E, Sciatti E, Rossi L, et al. Irreversible proteasome inhibition with carfilzomib as first line therapy in patients with newly diagnosed multiple myeloma: early in vivo cardiovascular effects. Eur J Pharm. 2018;838:85–90.

    CAS  Google Scholar 

  42. Protogerou AD, Sfikakis PP, Stamatelopoulos KS, Papamichael C, Aznaouridis K, Karatzis E, et al. Interrelated modulation of endothelial function in Behcet’s disease by clinical activity and corticosteroid treatment. Arthritis Res Ther. 2007;9:R90.

    PubMed  PubMed Central  Google Scholar 

  43. Gonzalez-Juanatey C, Llorca J, Garcia-Porrua C, Sanchez-Andrade A, Martín J, Gonzalez-Gay MA. Steroid therapy improves endothelial function in patients with biopsy-proven giant cell arteritis. J Rheumatol. 2006;33:74–8.

    CAS  PubMed  Google Scholar 

  44. Iuchi T, Akaike M, Mitsui T, Ohshima Y, Shintani Y, Azuma H, et al. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res. 2003;92:81–7.

    CAS  PubMed  Google Scholar 

  45. Mangos GJ, Walker BR, Kelly JJ, Lawson JA, Webb DJ, Whitworth JA. Cortisol inhibits cholinergic vasodilatation in the human forearm. Am J Hypertens. 2000;13:1155–60.

    CAS  PubMed  Google Scholar 

  46. Lee SJ, Levitsky K, Parlati F, Bennett MK, Arastu-Kapur S, Kellerman L, et al. Clinical activity of carfilzomib correlates with inhibition of multiple proteasome subunits: application of a novel pharmacodynamic assay. Br J Haematol. 2016;173:884–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110:3281–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Albornoz N, Bustamante H, Soza A, Burgos P. Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci. 2019;20:3379.

    CAS  PubMed Central  Google Scholar 

  49. Meiners S, Ludwig A, Lorenz M, Dreger H, Baumann G, Stangl V, et al. Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells. Free Radic Biol Med. 2006;40:2232–41.

    CAS  PubMed  Google Scholar 

  50. Kwon YT, Ciechanover A. The Ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochemical Sci. 2017;42:873–86.

    CAS  Google Scholar 

  51. Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem. 2003;278:21517–25.

    CAS  PubMed  Google Scholar 

  52. Tsakiri EN, Gumeni S, Vougas K, Pendin D, Papassideri I, Daga A, et al. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy. 2019;15:1757–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Russell SD, Lyon A, Lenihan DJ, Moreau P, Joshua D, Chng W-J, et al. Serial echocardiographic assessment of patients (pts) with relapsed multiple myeloma (RMM) receiving carfilzomib and dexamethasone (Kd) vs bortezomib and dexamethasone (Vd): a substudy of the phase 3 Endeavor Trial (NCT01568866). Blood. 2015;126:4250.

    Google Scholar 

  54. Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, et al. Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:7–17.

    CAS  PubMed  Google Scholar 

  55. Charakida M, Masi S, Lüscher TF, Kastelein JJP, Deanfield JE. Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J. 2010;31:2854–61.

    PubMed  Google Scholar 

  56. Moreau P, Mateos MV, Berenson JR, Weisel K, Lazzaro A, Song K, et al. Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A.R.R.O.W.): interim analysis results of a randomised, phase 3 study. Lancet Oncol. 2018;19:953–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Marina Karakitsou for performing all vascular studies of this work.

Funding

AL has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No. [1285]. This study was also supported by institutional funding to EK, IPT, KS, and MAD.

Author information

Authors and Affiliations

Authors

Contributions

EK, K.Stamatelopoulos, IPT, and MAD designed research, analyzed, and interpreted data. AL, MG, NM, E-DP, EM, ET, and K.Stellos performed research. IPT and E-DP contributed vital new reagents or analytical tools and assayed proteasome activity. EE-P, DF, NK, ID, MK, MR, and MM collected data. GG and K.Stamatelopoulos performed statistical analysis. EK, K.Stamatelopoulos, IPT, AL, and GG wrote the manuscript.

Corresponding authors

Correspondence to Efstathios Kastritis or Kimon Stamatelopoulos.

Ethics declarations

Conflict of interest

AMGEN financially supported part of the study as an investigator-initiated study (NCT03543579). EK reports honoraria from Amgen, Genesis Pharma, Takeda, Janssen and Prothena as well as research funding from Amgen and Janssen. KS received fees for being on the regional advisory board for Bayer. ET reports honoraria from Amgen, Celgene, Takeda, Novartis, Roche, Janssen, Bristol-Myers Squibb, and GlaxoSmithKline; consulting or advisory role at Takeda, Novartis, Janssen, Amgen, and Celgene; research funding from Amgen and Janssen; and travel, accommodations and expenses from Amgen, Janssen, Genesis Pharma, and Takeda. KS reports research funding and honoraria from Amgen. IPT reports research funding from Amgen. MAD reports honoraria from Amgen, Novartis, Celgene, Takeda, Janssen, and Bristol-Myers Squibb; consulting or advisory role at Amgen, Janssen, Takeda, and Celgene; research funding from Janssen and Amgen; and travel, accommodations, and expenses from Janssen. The rest of the authors report no conflicts.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastritis, E., Laina, A., Georgiopoulos, G. et al. Carfilzomib-induced endothelial dysfunction, recovery of proteasome activity, and prediction of cardiovascular complications: a prospective study. Leukemia 35, 1418–1427 (2021). https://doi.org/10.1038/s41375-021-01141-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01141-4

This article is cited by

Search

Quick links