Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The induction strategies administered in the treatment of multiple myeloma exhibit a deleterious effect on the endothelium

Abstract

Multiple myeloma induction treatment includes proteasome inhibitors (PI) and immunomodulatory agents at present. The incidence of engraftment syndrome, a transplant complication potentially related to endothelium, has increased in the last years. Our aim was to investigate whether bortezomib (Velcade, V), thalidomide (T), and dexamethasone (D) affect the endothelium, and explore defibrotide (DF) as protective agent. Endothelial cells (ECs) in culture were exposed to the compounds separately or in combination, without (VTD) and with DF (VTD + DF). Changes in markers of: (i) inflammation (ICAM-1 expression and leukocyte adhesion), (ii) VWF production, (iii) cell permeability (VE-cadherin expression and cell monolayer integrity), and (iv) oxidative stress (ROS production and eNOS expression) were measured. ICAM-1 and VWF expression increased significantly in VTD but were similar to controls in VTD + DF. Separately, bortezomib was the main deleterious agent whereas dexamethasone showed no harmful effect. Leukocyte adhesion showed similar trends. VE-cadherin expression was lower in VTD and normalized in VTD + DF. EC permeability increased only with bortezomib. No changes were observed in oxidative stress markers. Our results demonstrate that bortezomib damages the endothelium, and DF prevents this effect. A better knowledge of the induction drugs impact will allow the design of measures to protect the endothelium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of ICAM-1 on ECs exposed to the study compounds in combination, in the absence and presence of DF, and individually.
Fig. 2: Leukocyte attachment on EC monolayers exposed to the study compounds in combination, in the absence and presence of DF, and individually.
Fig. 3: Expression of VWF on ECs exposed to the study compounds in combination, in the absence and presence of DF, and individually.
Fig. 4: Expression of VE-cadherin on ECs exposed to the study compounds in combination, in the absence and presence of DF, and individually.
Fig. 5: Bar diagrams represent data corresponding to the oxidative stress experiments.

Similar content being viewed by others

References

  1. Li Z, Rubinstein SM, Thota R, Savani M, Brissot E, Shaw BE, et al. Immune-mediated complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2016;22:1368–75.

    CAS  Google Scholar 

  2. Koniarczyk HL, Ferraro C, Miceli T. Hematopoietic stem cell transplantation for multiple myeloma. Semin Oncol Nurs. 2017;33:265–78.

    PubMed  Google Scholar 

  3. Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. Medicine: the diagnosis and treatment of multiple myeloma. Dtsch Arztebl Int. 2016;113:470–6.

    PubMed  PubMed Central  Google Scholar 

  4. Cavo M, Terpos E, Bargay J, Einsele H, Cavet J, Greil R, et al. The multiple myeloma treatment landscape: international guideline recommendations and clinical practice in Europe. Expert Rev Hematol. 2018;11:219–37.

    CAS  PubMed  Google Scholar 

  5. Cornell RF, Hari P, Zhang M-J, Zhong X, Thompson J, Fenske TS, et al. Divergent effects of novel immunomodulatory agents and cyclophosphamide on the risk of engraftment syndrome after autologous peripheral blood stem cell transplantation for multiple myeloma. Biol Blood Marrow Transpl. 2013;19:1368–73.

    CAS  Google Scholar 

  6. Carreras E, Diaz-Ricart M. The role of the endothelium in the short-term complications of hematopoietic SCT. Bone Marrow Transpl. 2011;46:1495–502.

    CAS  Google Scholar 

  7. DeLeve LD, Wang X, Kanel GC, Ito Y, Bethea NW, McCuskey MK, et al. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology. 2003;38:900–8.

    CAS  PubMed  Google Scholar 

  8. DeLeve LD, Wang X, Tsai J, Kanel G, Strasberg S, Tokes ZA. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Gastroenterology. 2003;125:882–90.

    CAS  PubMed  Google Scholar 

  9. DeLeve LD, Ito Y, Bethea NW, McCuskey MK, Wang X, McCuskey RS. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Liver Physiol. 2003;284:G1045–52.

    CAS  Google Scholar 

  10. Nürnberger W, Willers R, Burdach S, Göbel U. Risk factors for capillary leakage syndrome after bone marrow transplantation. Ann Hematol. 1997;74:221–4.

    PubMed  Google Scholar 

  11. Afessa B, Tefferi A, Litzow MR, Krowka MJ, Wylam ME, Peters SG. Diffuse alveolar hemorrhage in hematopoietic stem cell transplant recipients. Am J Respir Crit Care Med. 2002;166:641–5.

    PubMed  Google Scholar 

  12. George JN. ADAMTS13, thrombotic thrombocytopenic purpura, and hemolytic uremic syndrome. Curr Hematol Rep. 2005;4:167–9.

    CAS  PubMed  Google Scholar 

  13. George JN, Li X, McMinn JR, Terrell DR, Vesely SK, Selby GB. Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome following allogeneic HPC transplantation: a diagnostic dilemma. Transfusion. 2004;44:294–304.

    PubMed  Google Scholar 

  14. Palomo M, Diaz-Ricart M, Carbo C, Rovira M, Fernandez-Aviles F, Martine C, et al. Endothelial dysfunction after hematopoietic stem cell transplantation: role of the conditioning regimen and the type of transplantation. Biol Blood Marrow Transplant. 2010;16:985–93.

    CAS  PubMed  Google Scholar 

  15. Maiolino A, Biasoli I, Lima J, Portugal AC, Pulcheri W, Nucci M. Post-transplant complications engraftment syndrome following autologous hematopoietic stem cell transplantation: definition of diagnostic criteria. Bone Marrow Transplant. 2003;31:393–7.

    CAS  PubMed  Google Scholar 

  16. Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:893–8.

    CAS  PubMed  Google Scholar 

  17. Katzel JA, Mazumder A, Jagannath S, Vesole DH. Engraftment syndrome after hematopoietic stem cell transplantation in multiple myeloma. Clin Lymphoma Myeloma. 2006;7:151.

    PubMed  Google Scholar 

  18. Gao Y, Ma G, Liu S, Teng Y, Wang Y, Su Y. Thalidomide and multiple myeloma serum synergistically induce a hemostatic imbalance in endothelial cells in vitro. Thromb Res. 2015;135:1154–9.

    CAS  PubMed  Google Scholar 

  19. Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, et al. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab. 2017;37:3695–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Palomo M, Diaz-Ricart M, Carreras E. Endothelial dysfunction in hematopoietic cell transplantation. Clin Hematol Int. 2019;1:45.

    Google Scholar 

  21. Akil A, Zhang Q, Mumaw CL, Raiker N, Yu J, Velez de Mendizabal N, et al. Biomarkers for diagnosis and prognosis of sinusoidal obstruction syndrome after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21:1739–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mir E, Palomo M, Rovira M, Pereira A, Escolar G, Penack O, et al. Endothelial damage is aggravated in acute GvHD and could predict its development. Bone Marrow Transplant. 2017;52:1317–25.

    CAS  PubMed  Google Scholar 

  23. Martinez-Sanchez J, Hamelmann H, Palomo M, Mir E, Moreno-Castaño AB, Torramade S, et al. Acute graft-vs.-host disease-associated endothelial activation in vitro is prevented by defibrotide. Front Immunol. 2019;10:2339.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Palomo M, Diaz-Ricart M, Carbo C, Rovira M, Fernandez-Aviles F, Escolar G, et al. The release of soluble factors contributing to endothelial activation and damage after hematopoietic stem cell transplantation is not limited to the allogeneic setting and involves several pathogenic mechanisms. Biol Blood Marrow Transplant. 2009;15:537–46.

    CAS  PubMed  Google Scholar 

  25. Gutiérrez-García G, Rovira M, Magnano L, Rosiñol L, Bataller A, Suárez-Lledó M, et al. Innovative strategies minimize engraftment syndrome in multiple myeloma patients with novel induction therapy following autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018;53:1541–7.

    PubMed  Google Scholar 

  26. Eissner G, Multhoff G, Gerbitz A, Kirchner S, Bauer S, Haffner S, et al. Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: protective effect of defibrotide. Blood. 2002;100:334–40.

    CAS  PubMed  Google Scholar 

  27. Palomo M, Vera M, Martin S, Torramadé-Moix S, Martinez-Sanchez J, Moreno AB, et al. Up-regulation of HDACs, a harbinger of uraemic endothelial dysfunction, is prevented by defibrotide. J Cell Mol Med. 2019;24:1713–23.

    PubMed  PubMed Central  Google Scholar 

  28. Richardson PG, Soiffer RJ, Antin JH, Uno H, Jin Z, Kurtzberg J, et al. Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant. 2010;16:1005–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosiñol L, Oriol A, Teruel AI, Hernández D, López-Jiménez J, de la Rubia J, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood. 2012;120:1589–96.

    PubMed  Google Scholar 

  30. Carmona A, Díaz-Ricart M, Palomo M, Molina P, Pino M, Rovira M, et al. Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus–sirolimus on endothelial cells: protective effect of defibrotide. Biol Blood Marrow Transplant. 2013;19:1439–45.

    CAS  PubMed  Google Scholar 

  31. Malard F, Harousseau JL, Mohty M. Anti-tumour treatment multiple myeloma treatment at relapse after autologous stem cell transplantation: a practical analysis. Cancer Treat Rev. 2017;52:41–7.

    CAS  PubMed  Google Scholar 

  32. Oyama Y, Cohen B, Traynor A, Brush M, Rodriguez J, Burt RK. Case report engraftment syndrome: a common cause for rash and fever following autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplant. 2002;29:81–5.

    CAS  PubMed  Google Scholar 

  33. Carreras E, Fernádez-Avilés F, Silva L, Guerrero M, Fernández De Larrea C, Martínez C, et al. Engraftment syndrome after auto-SCT: analysis of diagnostic criteria and risk factors in a large series from a single center. Bone Marrow Transplant. 2010;45:1417–22.

    CAS  PubMed  Google Scholar 

  34. Falci SGM, Lima TC, Martins CC, Dos Santos CRR, Pinheiro MLP. Preemptive effect of dexamethasone in third-molar surgery: A Meta-analysis. Anesth Prog. 2017;64:136–43.

    PubMed  PubMed Central  Google Scholar 

  35. Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36:561–84.

    CAS  PubMed  Google Scholar 

  36. Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors—molecular basis and current perspectives in multiple myeloma. J Cell Mol Med. 2014;18:947–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ludwig A, Fechner M, Wilck N, Meiners S, Grimbo N, Baumann G, et al. Potent anti-inflammatory effects of low-dose proteasome inhibition in the vascular system. J Mol Med. 2009;87:793–802.

    CAS  PubMed  Google Scholar 

  38. Vestweber D. VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol. 2008;28:223–32.

    CAS  PubMed  Google Scholar 

  39. Li W, Fu J, Zhang S, Zhao J, Xie N, Cai G. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis. Toxicol Appl Pharm. 2015;285:98–109.

    CAS  Google Scholar 

  40. Sahni A, Thomasson ED, Shah R, Sahni SK. Bortezomib effects on human microvascular endothelium in vitro. Pharmacology. 2016;98:272–8.

    CAS  PubMed  Google Scholar 

  41. Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54:683–7.

    CAS  PubMed  Google Scholar 

  42. Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med. 2001;344:1951–2.

    CAS  PubMed  Google Scholar 

  43. Rafiee P, Stein DJ, Nelson VM, Otterson MF, Shaker R, Binion DG. Thalidomide inhibits inflammatory and angiogenic activation of human intestinal microvascular endothelial cells (HIMEC). Am J Physiol Gastrointest Liver Physiol. 2010;298:G167–76.

    CAS  PubMed  Google Scholar 

  44. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.

    CAS  PubMed  Google Scholar 

  45. Swan D, Rocci A, Bradbury C, Thachil J. Venous thromboembolism in multiple myeloma—choice of prophylaxis, role of direct oral anticoagulants and special considerations. Br J Haematol. 2018;183:538–56.

    PubMed  Google Scholar 

  46. Pescador R, Capuzzi L, Mantovani M, Fulgenzi A, Ferrero ME. Defibrotide: properties and clinical use of an old/new drug. Vasc Pharm. 2013;59:1–10.

    CAS  Google Scholar 

  47. Palomo M, Diaz-Ricart M, Rovira M, Escolar G, Carreras E. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:497–506.

    CAS  PubMed  Google Scholar 

  48. Palomo M, Mir E, Rovira M, Escolar G, Carreras E, Diaz-Ricart M. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance. Blood. 2016;127:1719–27.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Primary Hemostasis Laboratory staff (Hospital Clinic, Barcelona) for technical support, and Dr Urooj Zafar for his constructive comments.

Funding

Study partially supported by Jazz Pharmaceuticals (IST-16-10355); German José Carreras Leukaemia Foundation (Grant 03 R/2019); Instituto de Salud Carlos III, Spanish Government (PIE15/00027, DTS16/00133, and FIS PI19/00888), and Generalitat de Catalunya (2017-SGR675, CERCA).

Author information

Authors and Affiliations

Authors

Contributions

JM-S designed and conducted the experiments, analyzed the results, designed the images, and wrote the manuscript. MP contributed to the design and conducted the experiments, analyzed the results, and reviewed the manuscript. ST-M participated in the experiments, cell culture maintenance, and figures. ABM-C, MR, GG-G, FF-A, GE, OP, and LR reviewed results and manuscript. EC and MD-R designed, supervised, and reviewed the study, results, and manuscript.

Corresponding author

Correspondence to Maribel Diaz-Ricart.

Ethics declarations

Conflict of interest

Research partially supported by Jazz Pharmaceuticals plc/Gentium Inc. MP received speaker’s fees from Jazz Pharmaceuticals. GG-G received a grant from Pfizer and Gilead. GE, OP, EC, and MD-R received research funding and speaker’s fees from Jazz Pharmaceuticals. LR received honoraria from Janssen, Celgene, Amgen, and Takeda. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Sanchez, J., Palomo, M., Torramade-Moix, S. et al. The induction strategies administered in the treatment of multiple myeloma exhibit a deleterious effect on the endothelium. Bone Marrow Transplant 55, 2270–2278 (2020). https://doi.org/10.1038/s41409-020-0947-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-0947-9

This article is cited by

Search

Quick links