Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene expression profiles of the original tumors influence the generation of PDX models of lung squamous cell carcinoma


Patient-derived xenograft (PDX) murine models are employed for preclinical research on cancers, including non-small cell lung cancers (NSCLCs). Even though lung squamous cell carcinomas (LUSCs) show the highest engraftment rate among NSCLCs, half of them nevertheless show PDX failure in immunodeficient mice. Here, using immunohistochemistry and RNA sequencing, we evaluated the distinct immunohistochemical and gene expression profiles of resected LUSCs that showed successful engraftment. Among various LUSCs, including the basal, classical, secretory, and primitive subtypes, those in the non-engrafting (NEG) group showed gene expression profiles similar to the pure secretory subtype with positivity for CK7, whereas those in the engrafting (EG) group were similar to the mixed secretory subtype with positivity for p63. Pathway analysis of 295 genes that demonstrated significant differences in expression between NEG and EG tumors revealed that the former had enriched expression of genes related to the immune system, whereas the latter had enriched expression of genes related to the cell cycle and DNA replication. Interestingly, NEG tumors showed higher infiltration of B cells (CD19+) and follicular dendritic cells (CD23+) in lymph follicles than EG tumors. Taken together, these findings suggest that the PDX cancer model of LUSC represents only a certain population of LUSCs and that CD19- and CD23-positive tumor-infiltrating immune cells in the original tumors may negatively influence PDX engraftment in immunodeficient mice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Workflow for PDX generation.
Fig. 2: PDX engraftment is associated with a subtype of lung squamous cell carcinoma.
Fig. 3: Distinct gene expression profile of patient-derived tumors is associated with PDX engraftment.
Fig. 4: PDX engraftment-associated genes show links to various cellular pathways.
Fig. 5: PDX engraftment is associated with tumor-infiltrating immune cells in CD19+ lymph follicles or CD23+ secondary lymph follicles.


  1. 1.

    Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14:535–46.

    CAS  Article  Google Scholar 

  2. 2.

    Yatabe Y, Dacic S, Borczuk AC, Warth A, Russell PA, Lantuejoul S, et al. Best practices recommendations for diagnostic immunohistochemistry in lung cancer. J Thorac Oncol. 2019;14:377–407.

    CAS  Article  Google Scholar 

  3. 3.

    Wilkerson MD, Yin X, Hoadley KA, Liu Y, Hayward MC, Cabanski CR, et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res. 2010;16:4864–75.

    CAS  Article  Google Scholar 

  4. 4.

    Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  5. 5.

    Gandara DR, Hammerman PS, Sos ML, Lara PN Jr., Hirsch FR. Squamous cell lung cancer: from tumor genomics to cancer therapeutics. Clin Cancer Res. 2015;21:2236–43.

    CAS  Article  Google Scholar 

  6. 6.

    Day CP, Merlino G, Van, Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163:39–53.

    CAS  Article  Google Scholar 

  7. 7.

    Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.

    CAS  Article  Google Scholar 

  8. 8.

    Jiang Y, Zhao J, Zhang Y, Li K, Li T, Chen X, et al. Establishment of lung cancer patient-derived xenograft models and primary cell lines for lung cancer study. J Transl Med. 2018;16:138.

    CAS  Article  Google Scholar 

  9. 9.

    Morgan KM, Riedlinger GM, Rosenfeld J, Ganesan S, Pine SR. Patient-derived xenograft models of non-small cell lung cancer and their potential utility in personalized medicine. Front Oncol. 2017;7:2.

    Article  Google Scholar 

  10. 10.

    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–30.e14.

    CAS  Article  Google Scholar 

  11. 11.

    Faruki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol. 2017;12:943–53.

    Article  Google Scholar 

  12. 12.

    Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19:307–25.

    CAS  Article  Google Scholar 

  13. 13.

    Colbeck EJ, Ager A, Gallimore A, Jones GW. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front Immunol. 2017;8:1830.

    Article  Google Scholar 

  14. 14.

    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  Google Scholar 

  15. 15.

    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    Article  Google Scholar 

  16. 16.

    Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1:36.

    CAS  Article  Google Scholar 

  17. 17.

    Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Gronvik KO, et al. IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells. PLoS One. 2011;6:e21760.

    CAS  Article  Google Scholar 

  18. 18.

    Silina K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, Thut H, et al. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 2018;78:1308–20.

    CAS  Article  Google Scholar 

  19. 19.

    Stewart EL, Mascaux C, Pham NA, Sakashita S, Sykes J, Kim L, et al. Clinical utility of patient-derived xenografts to determine biomarkers of prognosis and map resistance pathways in EGFR-mutant lung adenocarcinoma. J Clin Oncol. 2015;33:2472–80.

    CAS  Article  Google Scholar 

  20. 20.

    Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14:6456–68.

    CAS  Article  Google Scholar 

  21. 21.

    Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

    Article  Google Scholar 

  22. 22.

    Kummar S, Fogarasi M, Canova A, Mota A, Ciesielski T. Cytokeratin 7 and 20 staining for the diagnosis of lung and colorectal adenocarcinoma. Br J Cancer. 2002;86:1884–7.

    CAS  Article  Google Scholar 

  23. 23.

    Gurda GT, Zhang L, Wang Y, Chen L, Geddes S, Cho WC, et al. Utility of five commonly used immunohistochemical markers TTF-1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: a retrospective study of 246 fine needle aspiration cases. Clin Transl Med. 2015;4:16.

    Article  Google Scholar 

  24. 24.

    Wu D, Pang Y, Wilkerson MD, Wang D, Hammerman PS, Liu JS. Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity. Br J Cancer. 2013;109:1599–608.

    CAS  Article  Google Scholar 

  25. 25.

    Watanabe H, Ma Q, Peng S, Adelmant G, Swain D, Song W, et al. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest. 2014;124:1636–45.

    CAS  Article  Google Scholar 

  26. 26.

    Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    CAS  Article  Google Scholar 

  27. 27.

    Moro M, Bertolini G, Caserini R, Borzi C, Boeri M, Fabbri A, et al. Establishment of patient derived xenografts as functional testing of lung cancer aggressiveness. Sci Rep. 2017;7:6689.

    Article  Google Scholar 

  28. 28.

    Nguyen LV, Cox CL, Eirew P, Knapp DJ, Pellacani D, Kannan N, et al. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat Commun. 2014;5:5871.

    CAS  Article  Google Scholar 

  29. 29.

    Belderbos ME, Koster T, Ausema B, Jacobs S, Sowdagar S, Zwart E, et al. Clonal selection and asymmetric distribution of human leukemia in murine xenografts revealed by cellular barcoding. Blood. 2017;129:3210–20.

    CAS  Article  Google Scholar 

  30. 30.

    Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. 2015;10:1187–201.

    CAS  Article  Google Scholar 

  31. 31.

    Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24:1277–89.

    CAS  Article  Google Scholar 

  32. 32.

    Hillinger S, Yang SC, Batra RK, Strieter RM, Weder W, Dubinett SM, et al. CCL19 reduces tumour burden in a model of advanced lung cancer. Br J Cancer. 2006;94:1029–34.

    CAS  Article  Google Scholar 

  33. 33.

    Lin Y, Sharma S, John MS. CCL21 cancer immunotherapy. Cancers. 2014;6:1098–110.

    Article  Google Scholar 

  34. 34.

    Engelhard VH, Rodriguez AB, Mauldin IS, Woods AN, Peske JD, Slingluff CL Jr. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol. 2018;200:432–42.

    CAS  Article  Google Scholar 

  35. 35.

    Fukuyama T, Ichiki Y, Yamada S, Shigematsu Y, Baba T, Nagata Y, et al. Cytokine production of lung cancer cell lines: correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Sci. 2007;98:1048–54.

    CAS  Article  Google Scholar 

Download references


We express our appreciation to Professor Masafumi Muratani (Department of Genome Biology, Faculty of Medicine, University of Tsukuba and Tsukuba Transborder Medical Center) for research support and kind advice. We thank also Tsukuba Human Biobank Center for sample supply.

Author information



Corresponding author

Correspondence to Yunjung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Shiba-Ishii, A., Nakagawa, T. et al. Gene expression profiles of the original tumors influence the generation of PDX models of lung squamous cell carcinoma. Lab Invest 101, 543–553 (2021).

Download citation


Quick links