Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction


Osteoporosis (OP) is a systemic skeletal disease leading to fragility fractures and is a major health issue globally. WNT/β-catenin signaling regulates bone-remodeling processes and plays vital roles in OP development. However, the underlying regulatory mechanisms behind WNT/β-catenin signaling in OP requires clarification, as further studies are required to identify novel alternate therapeutic agents to improve OP. Here we report that fibronectin 1 (FN-1) promoted differentiation and mineralization of osteoblasts by activating WNT/β-catenin pathway, in cultured pre-osteoblasts. With isobaric tags for relative and absolute quantitation labeling proteomics analysis, we investigated protein changes in bone samples from OP patients and normal controls. FN-1 accumulated in osteoblasts in bone samples from OP patients and age-related OP mice compared to control group. In addition, we observed that integrin β1 (ITGB1) acts as an indispensable signaling molecule for the interplay between FN-1 and β-catenin, and that FN-1 expression increased, but ITGB1 expression decreased in osteoblasts during OP progression. Therefore, our study reveals a novel explanation for WNT/β-catenin pathway inactivation in OP pathology. Supplying of FN-1 and ITGB1 may provide a potential therapeutic strategy in improving bone formation during OP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: FN-1 modulates osteogenic differentiation in vitro.
Fig. 2: FN-1 interacts with and promotes the nuclear translocation of β-catenin in osteoblasts.
Fig. 3: FN-1 expression in OP patient bone samples is significantly higher than the normal group.
Fig. 4: FN-1 expression accumulates in osteoblasts in aging mice.
Fig. 5: ITGB1 is essential for FN-1 in promoting osteogenesis via β-catenin signaling.


  1. 1.

    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Article  Google Scholar 

  2. 2.

    Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367:2010–18.

    CAS  Article  Google Scholar 

  3. 3.

    Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377:87.

    Article  Google Scholar 

  4. 4.

    Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

    CAS  Article  Google Scholar 

  5. 5.

    Corrado A, Sanpaolo ER, Di Bello S, Cantatore FP. Osteoblast as a target of anti-osteoporotic treatment. Postgrad Med. 2017;129:858–65.

    Article  Google Scholar 

  6. 6.

    An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci. 2016;147:46–58.

    CAS  Article  Google Scholar 

  7. 7.

    Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    CAS  Article  Google Scholar 

  8. 8.

    Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    CAS  Article  Google Scholar 

  9. 9.

    Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssiere B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.

    CAS  Article  Google Scholar 

  10. 10.

    Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.

    CAS  Article  Google Scholar 

  11. 11.

    Ge L, Cui Y, Liu B, Yin X, Pang J, Han J. ERalpha and Wnt/betacatenin signaling pathways are involved in angelicindependent promotion of osteogenesis. Mol Med Rep.2019;19:3469–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Liu SL, Zhou YM, Tang DB, Zhou N, Zheng WW, Tang ZH, et al. LGR6 promotes osteogenesis by activating the Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun. 2019;519:1–7.

    CAS  Article  Google Scholar 

  13. 13.

    Inoue D. Sequential treatment of osteoporosis with anti-sclerostin. Clin Calcium. 2019;29:363–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Maurer LM, Ma W, Mosher DF. Dynamic structure of plasma fibronectin. Crit Rev Biochem Mol Biol. 2015;51:213–27.

    Article  Google Scholar 

  15. 15.

    Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol. 2011;3:a005041.

    Article  Google Scholar 

  16. 16.

    Zollinger AJ, Smith ML. Fibronectin, the extracellular glue. Matrix Biol. 2017;60-61:27–37.

    CAS  Article  Google Scholar 

  17. 17.

    Gao W, Liu Y, Qin R, Liu D, Feng Q. Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochem Biophys Res Commun. 2016;476:35–41.

    CAS  Article  Google Scholar 

  18. 18.

    Kimura E, Kanzaki T, Tahara K, Hayashi H, Hashimoto S, Suzuki A, et al. Identification of citrullinated cellular fibronectin in synovial fluid from patients with rheumatoid arthritis. Mod Rheumatol. 2014;24:766–9.

    CAS  Article  Google Scholar 

  19. 19.

    Doddapattar P, Gandhi C, Prakash P, Dhanesha N, Grumbach IM, Dailey ME, et al. Fibronectin splicing variants containing extra domain A promote atherosclerosis in mice through toll-like receptor 4. Arterioscler Thromb Vasc Biol. 2015;35:2391–400.

    CAS  Article  Google Scholar 

  20. 20.

    Bentmann A, Kawelke N, Moss D, Zentgraf H, Bala Y, Berger I, et al. Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function. J Bone Miner Res. 2010;25:706–15.

    CAS  PubMed  Google Scholar 

  21. 21.

    Sens C, Huck K, Pettera S, Uebel S, Wabnitz G, Moser M, et al. Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins. J Biol Chem. 2017;292:7745–60.

    CAS  Article  Google Scholar 

  22. 22.

    Brunner M, Millon-Fremillon A, Chevalier G, Nakchbandi IA, Mosher D, Block MR, et al. Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition. J Cell Biol. 2011;194:307–22.

    CAS  Article  Google Scholar 

  23. 23.

    Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, et al. Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem. 2011;286:27687–97.

    CAS  Article  Google Scholar 

  24. 24.

    Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983;96:639–43.

    CAS  Article  Google Scholar 

  25. 25.

    Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008;20:495–501.

    CAS  Article  Google Scholar 

  26. 26.

    Grzesik WJ, Frazier CR, Shapiro JR, Sponseller PD, Robey PG, Fedarko NS. Age-related changes in human bone proteoglycan structure. Impact of osteogenesis imperfecta. J Biol Chem. 2002;277:43638–47.

    CAS  Article  Google Scholar 

  27. 27.

    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21.

    CAS  Article  Google Scholar 

  28. 28.

    Moursi AM, Damsky CH, Lull J, Zimmerman D, Doty SB, Aota S, et al. Fibronectin regulates calvarial osteoblast differentiation. J Cell Sci. 1996;109:1369–80.

    CAS  PubMed  Google Scholar 

  29. 29.

    Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5. Stem Cell Res Ther. 2018;9:52.

    Article  Google Scholar 

  30. 30.

    Lai CF, Cheng SL. Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation. J Bone Miner Res. 2005;20:330–40.

    CAS  Article  Google Scholar 

  31. 31.

    Popov C, Radic T, Haasters F, Prall WC, Aszodi A, Gullberg D, et al. Integrins alpha2beta1 and alpha11beta1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011;2:e186.

  32. 32.

    Hamidouche Z, Fromigue O, Ringe J, Haupl T, Vaudin P, Pages JC, et al. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA. 2009;106:18587–91.

    CAS  Article  Google Scholar 

  33. 33.

    Brown AC, Dysart MM, Clarke KC, Stabenfeldt SE, Barker TH. Integrin alpha3beta1 binding to fibronectin is dependent on the ninth type III repeat. J Biol Chem. 2015;290:25534–47.

    CAS  Article  Google Scholar 

  34. 34.

    Robinson EE, Foty RA, Corbett SA. Fibronectin matrix assembly regulates alpha5beta1-mediated cell cohesion. Mol Biol Cell. 2004;15:973–81.

    CAS  Article  Google Scholar 

  35. 35.

    Koshida S, Kishimoto Y, Ustumi H, Shimizu T, Furutani-Seiki M, Kondoh H, et al. Integrinalpha5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev Cell. 2005;8:587–98.

    CAS  Article  Google Scholar 

  36. 36.

    Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem. 2005;280:41342–51.

    CAS  Article  Google Scholar 

  37. 37.

    Rossini M, Gatti D, Adami S. Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93:121–32.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Guangxi Key R&D Project (Guike AB18050008), Guangxi Science and Technology Program (2018GXNSFAA294116, 2018GXNSFAA138074), High-level Innovation team and Outstanding Scholars Program of Colleges and Universities in Guangxi: innovative team of basic and Clinical Comprehensive Research on Bone and Joint degenerative Diseases, Scientific Research Project of High-level talents in the affiliated Hospital of Youjiang Medical College for nationalities (R20196301 and R20196306), and Open Project of Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases.

Author information




YT, KL, and JL conceived the project, designed and supervised the experiments. KL and JL wrote the paper. CY, CW, and JZ performed the experiments and analyzed the data. QL, FH, and FL helped with the cell-cultured experiments and immunoblotting analysis. YL, JC, FZ, and CH helped prepare the figures and finished the IHC/IF analysis.

Corresponding authors

Correspondence to Jia Liu or Kai Li or Yujin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, C., Zhou, J. et al. Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction. Lab Invest 100, 1494–1502 (2020).

Download citation

Further reading


Quick links