Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency

Abstract

Alcoholic fatty liver disease (AFLD) is one of the major causes of liver morbidity and mortality worldwide. We have previously shown that whole-body, but not hepatocyte-specific, deficiency of farnesoid X receptor (FXR) in mice worsens AFLD, suggesting that extrahepatic FXR deficiency is critical for AFLD development. Intestinal FXR is critical in suppressing hepatic bile acid (BA) synthesis by inducing fibroblast growth factor 15 (FGF15) in mice and FGF19 in humans. We hypothesized that intestinal FXR is critical for reducing AFLD development in mice. To test this hypothesis, we compared the AFLD severity in wild type (WT) and intestine-specific Fxr knockout (FXRInt−/−) mice following treatment with control or ethanol-containing diet. We found that FXRInt−/− mice were more susceptible to ethanol-induced liver steatosis and inflammation, compared with WT mice. Ethanol treatment altered the expression of hepatic genes involved in lipid and BA homeostasis, and ethanol detoxification. Gut FXR deficiency increased intestinal permeability, likely due to reduced mucosal integrity, as revealed by decreased secretion of Mucin 2 protein and lower levels of E-cadherin protein. In summary, intestinal FXR may protect AFLD development by maintaining gut integrity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Assessment of liver injury in WT and FXRInt−/− mice fed control or chronic (the Lieber-DeCarli diet containing 5% ethanol)-binge ethanol.
Fig. 2: Effects on hepatic inflammation and fibrosis by ethanol in WT and FXRInt−/− mice.
Fig. 3: Expression of genes involved in BA homeostasis and regulating lipid homeostasis.
Fig. 4: Hepatic expression of genes in ethanol metabolism and oxidative stress.
Fig. 5: Effects of ethanol feeding on the intestinal mucus layer and villi morphology.
Fig. 6: Effects of ethanol feeding on the intestinal permeability.
Fig. 7: Schematic figure of the effects of FXR on BA homeostasis and ethanol-induced injury.

References

  1. 1.

    Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bode C, Kugler V, Bode JC. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J Hepatol. 1987;4:8–14.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases. Curr Opin Pharmacol. 2017;37:80–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther. 2009;328:116–22.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, et al. Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol. 2010;24:1626–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology. 2008;48:1632–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology. 2018;67:2150–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Iracheta-Vellve A, Calenda CD, Petrasek J, Ambade A, Kodys K, Adorini L, et al. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice. Hepatol Commun. 2018;2:1379–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006;312:233–6.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Naugler WE. Bile acid flux is necessary for normal liver regeneration. PLoS ONE. 2014;9:e97426.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11.

    Zhu Y, Li F, Guo GL. Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res. 2011;63:259–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007;48:2664–72.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 2012;56:1034–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Kong B, Sun R, Huang M, Chow MD, Zhong XB, Xie W, et al. Fibroblast growth factor 15-dependent and bile acid-independent promotion of liver regeneration in mice. Hepatology. 2018;68:1961–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J. 2013;27:3583–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wu W, Zhu B, Peng X, Zhou M, Jia D, Gu J. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun. 2014;443:68–73.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Kong B, Zhang M, Huang M, Rizzolo D, Armstrong LE, Schumacher JD, et al. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury. Dig Liver Dis. 2019;51:570–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Bajaj JS, Kakiyama G, Zhao D, Takei H, Fagan A, Hylemon P, et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis. Alcohol Clin Exp Res. 2017;41:1857–65.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Zhang M, Kong B, Huang M, Wan R, Armstrong LE, Schumacher JD, et al. FXR deletion in hepatocytes does not affect the severity of alcoholic liver disease in mice. Dig Liver Dis. 2018;50:1068–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology. 2009;49:297–305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Uriarte I, Fernandez-Barrena MG, Monte MJ, Latasa MU, Chang HC, Carotti S, et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut. 2013;62:899–910.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Kong B, Huang J, Zhu Y, Li G, Williams J, Shen S, et al. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G893–902.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Zhu Y, Liu H, Zhang M, Guo GL. Fatty liver diseases, bile acids, and FXR. Acta Pharm Sin B. 2016;6:409–12.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–5.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc. 2013;8:627–37.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell. 2008;134:743–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Zhou Z, Sun X, Kang YJ. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. Am J Pathol. 2001;159:329–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Dianzani MU. Lipid peroxidation in ethanol poisoning: a critical reconsideration. Alcohol Alcohol. 1985;20:161–73.

    CAS  PubMed  Google Scholar 

  30. 30.

    Nanji AA, Zhao S, Sadrzadeh SM, Dannenberg AJ, Tahan SR, Waxman DJ. Markedly enhanced cytochrome P450 2E1 induction and lipid peroxidation is associated with severe liver injury in fish oil-ethanol-fed rats. Alcohol Clin Exp Res. 1994;18:1280–5.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wolfe A, Thomas A, Edwards G, Jaseja R, Guo GL, Apte U. Increased activation of the Wnt/beta-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J Pharmacol Exp Ther. 2011;338:12–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Zhan L, Liu HX, Fang Y, Kong B, He Y, Zhong XB, et al. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes. PLoS ONE. 2014;9:e105930.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Livero FA, Stolf AM, Dreifuss AA, Bastos-Pereira AL, Chicorski R, de Oliveira LG, et al. The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice. Chem Biol Interact. 2014;217:19–27.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Wu WB, Chen YY, Zhu B, Peng XM, Zhang SW, Zhou ML. Excessive bile acid activated NF-kappa B and promoted the development of alcoholic steatohepatitis in farnesoid X receptor deficient mice. Biochimie. 2015;115:86–92.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Manley S, Ni HM, Williams JA, Kong B, DiTacchio L, Guo G, et al. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity. Redox Biol. 2014;2:991–1002.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Gonzalez FJ, Jiang C, Xie C, Patterson AD. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig Dis. 2017;35:178–84.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68:1574–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Keitel V, Stindt J, Haussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and 0ther G protein-coupled receptors. Handb Exp Pharmacol. 2019;256:19–49.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Yan J, Xie W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm Sin B. 2016;6:450–2.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Thomas AM, Hart SN, Kong B, Fang J, Zhong XB, Guo GL. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology. 2010;51:1410–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was supported by Rutgers Busch grant; NIH-R01GM104037; NIH-R21ES029258; NIH-T32ES007148; NIH-F32DK116495; NIH-AR005073; and VA-BX002741.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grace L. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Kong, B., Zhang, M. et al. Enhanced alcoholic liver disease in mice with intestine-specific farnesoid X receptor deficiency. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0439-y

Download citation