βCysteine 93 in human hemoglobin: a gateway to oxidative stability in health and disease

Abstract

βcysteine 93 residue plays a key role in oxygen (O2)-linked conformational changes in the hemoglobin (Hb) molecule. This solvent accessible residue is also a target for binding of thiol reagents that can remotely alter O2 affinity, cooperativity, and Hb’s sensitivity to changes in pH. In recent years, βCys93 was assigned a new physiological role in the transport of nitric oxide (NO) through a process of S-nitrosylation as red blood cells (RBCs) travel from lungs to tissues. βCys93 is readily and irreversibly oxidized in the presence of a mild oxidant to cysteic acid, which causes destabilization of Hb resulting in improper protein folding and the loss of heme. Under these oxidative conditions, ferryl heme (HbFe4+), a higher oxidation state of Hb is formed together with its protein radical (.HbFe4+). This radical migrates to βCys93 and interacts with other “hotspot” amino acids that are highly susceptible to oxidative modifications. Oxidized βCys93 may therefore be used as a biomarker of oxidative stress, reflecting the deterioration of Hb within RBCs intended for transfusion or RBCs from patients with hemoglobinopathies. Site specific mutation of a redox active amino acid(s) to reduce the ferryl heme or direct chemical modifications that can shield βCys93 have been proposed to improve oxidative resistance of Hb and may offer a protective therapeutic strategy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Amino acids of the oxidation hotspot in human hemoglobin and genetically constructed amino acids that protect sickle cell hemoglobin from oxidation.
Fig. 2: Pseudoperoxidase activity of hemoglobin and subsequent oxidative modifications.
Fig. 3: Mass spectrometric analysis of beta cysteine 93 oxidation in normal and sickle cell hemoglobins under oxidative stress.

References

  1. 1.

    Dickerson RE and Geis I Hemoglobin: structure, function, evolution, and pathology. New York: Benjamin-Cummings Publishing Company, 1983.

  2. 2.

    Alayash AI. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat Biotech. 1999;17:545–9.

    CAS  Google Scholar 

  3. 3.

    Perutz MF. Stereochemistry of cooperative effects in haemoglobin: haem-haem interaction and the problem of allostery. Nature. 1970;228:726–39.

    CAS  PubMed  Google Scholar 

  4. 4.

    Kan HI, Chen IY, Zulfajri M, Wang CC. Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J Physical Chem. 2013;117:9831–9.

    CAS  Google Scholar 

  5. 5.

    Cheng Y, Shen TJ, Simplaceanu V, Ho C. Ligand binding properties and structural studies of recombinant and chemically modified hemoglobins altered at beta 93 cysteine. Biochemistry. 2002;41:11901–13.

    CAS  PubMed  Google Scholar 

  6. 6.

    Alayash AI. Mechanisms of toxicity and modulation of hemoglobin-based oxygen carriers. Shock. 2019;52:41–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Khan I, Dantsker D, Samuni U, Friedman AJ, Bonaventura C, Manjula B, et al. Beta 93 modified hemoglobin: kinetic and conformational consequences. Biochemistry. 2001;40:7581–92.

    CAS  PubMed  Google Scholar 

  8. 8.

    Boykins RA, Buehler PW, Jia Y, Venable R, Alayash AI. O-raffinose crosslinked hemoglobin lacks site-specific chemistry in the central cavity: structural and functional consequences of beta93Cys modification. Proteins. 2005;59:840–55.

    CAS  PubMed  Google Scholar 

  9. 9.

    Lancaster, JR. Historical origins of the discovery of mammalian nitric oxide (nitrogen monoxide) production/physiology/pathophysiology. Biochem Pharmacol. 2020;176:113793. https://doi.org/10.1016/j.bcp.2020.113793.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KD, et al. Hemoglobins dioxygenate nitric oxide with high fidelity. Inorg Biochem. 2006;100:542–50.

    CAS  Google Scholar 

  11. 11.

    Sharma VS, Traylor TG, Gardiner R, Mizukami H. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry. 1987;26:3837–43.

    CAS  PubMed  Google Scholar 

  12. 12.

    Alayash AI, Fratantoni JC, Bonaventura C, Bonaventura J, Cashon RE. Nitric oxide binding to human ferrihemoglobins cross-linked between either alpha or beta subunits. Arch Biochem Biophys. 1993;303:332–8.

    CAS  PubMed  Google Scholar 

  13. 13.

    Alayash AI, Cashon RE. Hemoglobin and free radicals: implications for the development of a safe blood substitute. Mol Med Today. 1995;1:122–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380:221–6.

    CAS  PubMed  Google Scholar 

  15. 15.

    Premont RT, Stamler JS. Essential role of hemoglobin βCys93 in cardiovascular physiology. Physiology. 2020;35:234–43.

    PubMed  Google Scholar 

  16. 16.

    Minneci PC, Deans KJ, Shiva S, Zhi H, Banks SM, Kern S, et al. Nitrite reductase activity of hemoglobin as a systemic nitric oxide generator mechanism to detoxify plasma hemoglobin produced during hemolysis. Am J Physiol. 2008;295:H743–H754.

    CAS  Google Scholar 

  17. 17.

    Winslow RM, Intaglietta M. SNO job; red cell age and loss of function: advance or SNO-job? Transfusion. 2008;48:411–4.

    CAS  PubMed  Google Scholar 

  18. 18.

    Buehler PW, Karnaukhova E, Gelderman MP, Alayash AI. Blood aging, safety, and transfusion: capturing the “radical” menace. Antioxid Redox Signal. 2011;14:1713–28.

    CAS  PubMed  Google Scholar 

  19. 19.

    Roche CJ, Cassera MB, Dantsker D, Hirsch RE, Friedman JM. Generating S-nitrosothiols from hemoglobin: mechanisms, conformational dependence, and physiological relevance. J Biol Chem. 2013;288:22408–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Eich RF, Li T, Lemon DD, Doherty DH, Curry SR, Aitken JF, et al. Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry. 1996;35:6976–83.

    CAS  PubMed  Google Scholar 

  21. 21.

    Doctor A, Gaston B, Kim-Shapiro DB. Detecting physiologic fluctuations in the S-nitrosohemoglobin micropopulation: Triiodide versus 3C. Blood. 2006;108:3225–7.

    CAS  PubMed  Google Scholar 

  22. 22.

    Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018;70:13–42.

    CAS  PubMed  Google Scholar 

  23. 23.

    Hrinczenko BW, Schechter AN, Wojtkowski TL, Pannell LK, Cashon RE, Alayash AI. Nitric oxide-mediated heme oxidation and selective β-globin nitrosation of hemoglobin from normal and sickle erythrocytes. Biochem Biophys Res Comm. 2000;275:962–7.

    CAS  PubMed  Google Scholar 

  24. 24.

    Winterbourn CC, Carrell RW. Oxidation of human haemoglobin by copper. Mechanism and suggested role of the thiol group of residue beta-93. Biochem J. 1977;165:141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Balagopalakrishna C, Abugo OO, Horsky J, Manoharan PT, Nagababu E, Rifkind JM. Superoxide produced in the heme pocket of the beta-chain of hemoglobin reacts with the beta-93 cysteine to produce a thiyl radical. Biochemistry. 1998;37:13194–202.

    CAS  PubMed  Google Scholar 

  26. 26.

    Shikama K. A controversy on the mechanism of autoxidation of oxymyoglobin and oxyhaemoglobin: oxidation, dissociation, or displacement? Biochem J. 1984;223:279–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Vitturi DA, Sun CW, Harper VM, Thrash-Williams B, Cantu-Medellin N, Chacko BK, et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in Vivo. Free Radic Biol Med. 2013;55:119–29.

    CAS  PubMed  Google Scholar 

  28. 28.

    Jia Y, Buehler PW, Boykins RA, Venable RM, Alayash AI. Structural basis of peroxide-mediated changes in human hemoglobin: a novel oxidative pathway. J Biol Chem. 2007;282:4894–907.

    CAS  PubMed  Google Scholar 

  29. 29.

    Momozono A, Kodera Y, Sasaki S, Nakagawa Y, Konno R, Shichiri M. Oxidised Met147 of human serum albumin is a biomarker of oxidative stress, reflecting glycaemic fluctuations and hypoglycaemia in diabetes. Scientific Reports. 2020;10:268 https://doi.org/10.1038/s41598-019-57095-.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochim. Biophys. Acta. 2005;1703:135–40.

    CAS  PubMed  Google Scholar 

  31. 31.

    Khor HK, Fisher MT, Schöneich C. Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J Biol Chem. 2004;279:19486–93.

    CAS  PubMed  Google Scholar 

  32. 32.

    Bonaventura C, Henkens R, Alayash AI, Banerjee S, Crumbliss AL. Molecular controls of the oxygenation and redox reactions of hemoglobin. Antioxid Redox Signal. 2013;18:2298–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pimenova T, Pereira CP, Gehrig P, Buehler PW, Schaer DJ, Zenobi RJ. Quantitative mass spectrometry defines an oxidative hotspot in hemoglobin that is specifically protected by haptoglobin. Journal of Proteome Res. 2010;9:4061–70.

    CAS  Google Scholar 

  34. 34.

    Strader MB, Alayash AI. Exploring oxidative reactions in hemoglobin variants using mass spectrometry: lessons for engineering oxidatively stable oxygen therapeutics. Antioxid Redox Signal. 2017;26:777–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kassa T, Strader MB, Nakagawa A, Zapol WM, Alayash AI. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects. Metallomics. 2017;9:1260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Meng F, Kassa T, Strader MB, Soman J, Olson JS, Alayash AI. Substitutions in the β subunits of sickle-cell hemoglobin improve oxidative stability and increase the delay time of sickle-cell fiber formation. J Biol Chem. 2019;294:4145–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kettisen K, Strader MB, Wood F, Alayash AI, Bülow L. Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin. Redox Biol. 2018;19:218–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Koch CG, Duncan AI, Figueroa P, Dai L, Sessler DI, Frank SM, et al. Real age: red blood cell aging during storage. Ann Thorac Surg. 2019;107:973–80.

    PubMed  Google Scholar 

  39. 39.

    Wither M, Dzieciatkowska M, Nemkov T, Strop P, D’Alessandro A, Hansen KC. Hemoglobin oxidation at functional amino acid residues during routine storage of red blood cells. Transfusion. 2016;56:421–6.

    CAS  PubMed  Google Scholar 

  40. 40.

    Blaken GR, Wang Y, Lopez JA, Fu X Cysteine 93 of hemoglobin beta chain is the major target of oxidation during red blood cell storage. Blood 2009; 114: Poster 4040. 10.1182/blood.V114.22.4040.4040.

  41. 41.

    Alayash AI. Haptoglobin: old protein with new functions. Clin Chim Acta. 2011;412:493–8.

    CAS  PubMed  Google Scholar 

  42. 42.

    Cooper CE, Schaer DJ, Buehler PW, Wilson MT, Reeder BJ, Silkstone G, et al. Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine β145. Antioxid Redox Signal. 2013;18:2264–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Mollan TL, Jia Y, Banerjee S, Wu G, Kreulen RT, Tsai AL, et al. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic Biol Med. 2014;69:265–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    CB Andersen, et al. Structure of the haptoglobin-haemoglobin complex. Nature. 2012;489:456–9.

    Google Scholar 

  45. 45.

    Alayash AI, Andersen CB, Moestrup SK, Bülow L. Haptoglobin: the hemoglobin detoxifier in plasma. Trends Biotechnol. 2013;31:2–3.

    CAS  PubMed  Google Scholar 

  46. 46.

    RP Hebbel, Ney PA, Foker W. Autoxidation, dehydration, and adhesivity may be related abnormalities of sickle erythrocytes. Am J Physiol. 1989;256:C579–C583.

    Google Scholar 

  47. 47.

    Kassa T, Jana S, Strader MB, Meng F, Jia Y, Wilson MT, et al. Sickle cell hemoglobin in the ferryl state promotes βCys-93 oxidation and mitochondrial dysfunction in epithelial lung cells (E10). J Biol Chem. 2015;290:27939–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kelman DJ, Mason RP. Characterization of the rat hemoglobin thiyl free radical formed upon reaction with phenylhydrazine. Arch Biochem Biophys. 1993;306:439–42.

    CAS  PubMed  Google Scholar 

  49. 49.

    Scott MD, van den Berg JJ, Repka T, Rouyer-Fessard P, Hebbel RP, Beuzard Y, et al. Effect of excess alpha-hemoglobin chains on cellular and membrane oxidation in model beta-thalassemic erythrocytes. J Clin Invest. 1993;91:1706–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Strader MB, Kassa T, Meng F, Wood FB, Hirsch RE, Friedman JM, et al. Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol. 2016;8:363–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kassa T, Wood F, Strader MB, Alayash AI Antisickling drugs targeting βCys93 reduce iron oxidation and oxidative changes in sickle cell hemoglobin. Front Physiol. 2019; 24; 10:931. 10.3389/fphys.2019.00931.

  52. 52.

    Jana S, Strader MB, Meng F, Hicks W, Kassa T, Tarandovskiy I, et al. Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles. 20183. pii: 120451. 10.1172/jci.insight.120451

  53. 53.

    Nakagawa A, Ferrari M, Schleifer G, Cooper MK, Liu C, Yu B, et al. A Triazole disulfide compound increases the affinity of hemoglobin for oxygen and reduces the sickling of human sickle cells. Mol Pharm. 2018;15:1954–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, et al. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol. 2005;128:552–61.

    CAS  PubMed  Google Scholar 

  55. 55.

    Niihara Y, Zerez CR, Akiyama DS, Tanaka KR. Increased red cell glutamine availability in sickle cell anemia: Demonstration of increased active transport, affinity, and increased glutamate level in intact red cells. J Lab Clin Med. 1997;130:83–90.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank past and present members of my laboratory for their valuable contribution to this work. I would like to thank Drs. Tigist Kassa and Sirsendu Jana for assisting in constructing figures included in this article. I would also like to thank Drs. Michael Heaven and Felice D’Agnillo for reading the manuscript. Funding was provided by internal FDA and NIH/NHLBI grants (HL110900).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdu I. Alayash.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alayash, A.I. βCysteine 93 in human hemoglobin: a gateway to oxidative stability in health and disease. Lab Invest (2020). https://doi.org/10.1038/s41374-020-00492-3

Download citation

Search