Antifibrotic effects of hypocalcemic vitamin D analogs in murine and human hepatic stellate cells and in the CCl4 mouse model

Abstract

Liver cirrhosis is a life-threatening consequence of liver fibrosis. The aim of this study was to investigate the antifibrotic potential of clinically available vitamin D analogs compared to that of calcitriol in vitro and in vivo. Murine hepatic stellate cells, Kupffer cells, and human LX-2 cells were treated with vitamin D analogs, and the profibrotic behavior of these cells was studied. In vivo liver fibrosis was induced using CCl4 until measurable fibrosis was established. Animals were then treated with calcitriol and paricalcitol. Vitamin D and its analogs showed antifibrotic effects in vitro. Treatment with active vitamin D (calcitriol, CAL) and its analogs reduced the protein expression of α-smooth muscle actin (α-SMA) in mHSC. In human LX-2 cells alfacalcidol reduced transforming growth factor-β (TGF-β) induced platelet-derived growth factor receptor-β protein expression and contractility while paricalcitol (PCT), in its equipotent dose to CAL, reduced TGF-β induced α-SMA protein expression, and ACTA2 and TGF-β mRNA expression. No effects of a treatment with vitamin D and its analogs were observed in Kupffer cells. In vivo, PCT-treated mice had significantly lower calcium levels than CAL-treated mice. CAL and PCT reduced the hepatic infiltration of CD11b-positive cells and alanine transaminase levels, while PCT but not CAL significantly inhibited fibrosis progression, with a favorable side effect profile in the CCl4 model. We conclude that hypocalcemic vitamin D analogs should be considered in future studies investigating vitamin D for the treatment of liver fibrosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Schuppan D, Afdhal NH. Liver cirrhosis. Lancet. 2008;371:838–51.

    CAS  Article  Google Scholar 

  2. 2.

    Bosch FX, Ribes J, Diaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127(5Suppl 1):S5–16.

    Article  Google Scholar 

  3. 3.

    Caraceni P, Riggio O, Angeli P, Alessandria C, Neri S, Foschi FG, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet. 2018;391:2417–29.

    CAS  Article  Google Scholar 

  4. 4.

    Trotter J, Pieramici E, Everson GT. Chronic albumin infusions to achieve diuresis in patients with ascites who are not candidates for transjugular intrahepatic portosystemic shunt (TIPS). Dig Dis Sci. 2005;50:1356–60.

    CAS  Article  Google Scholar 

  5. 5.

    Schindler C, Ramadori G. Albumin substitution improves urinary sodium excretion and diuresis in patients with liver cirrhosis and refractory ascites. J Hepatol. 1999;31:1132.

    CAS  Article  Google Scholar 

  6. 6.

    Bajaj JS, Tandon P, O’Leary JG, Biggins SW, Wong F, Kamath PS, et al. The impact of albumin use on resolution of hyponatremia in hospitalized patients with cirrhosis. Am J Gastroenterol. 2018;113:1339.

    CAS  Article  Google Scholar 

  7. 7.

    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    CAS  Article  Google Scholar 

  8. 8.

    Ramadori G, Saile B. Portal tract fibrogenesis in the liver. Lab Invest. 2004;84:153–9.

    Article  Google Scholar 

  9. 9.

    Ramadori G, Saile B. Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific, this is the question. Gastroenterology. 2004;127:997–1000.

    CAS  Article  Google Scholar 

  10. 10.

    Gascon-Barre M, Demers C, Mirshahi A, Néron S, Zalzal S, Nanci A. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology. 2003;37:1034–42.

    CAS  Article  Google Scholar 

  11. 11.

    Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601–13.

    CAS  Article  Google Scholar 

  12. 12.

    Arteh J, Narra S, Nair S. Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci. 2010;55:2624–8.

    CAS  Article  Google Scholar 

  13. 13.

    Zhu L, Kong M, Han YP, Bai L, Zhang X, Chen Y, et al. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Can J Physiol Pharmacol. 2015;93:385–94.

    CAS  Article  Google Scholar 

  14. 14.

    Paternostro R, Wagner D, Reiberger T, Mandorfer M, Schwarzer R, Ferlitsch M, et al. Low 25-OH-vitamin D levels reflect hepatic dysfunction and are associated with mortality in patients with liver cirrhosis. Wien Klin Wochenschr. 2017;129:8–15.

    CAS  Article  Google Scholar 

  15. 15.

    Amanzada A, Goralczyk AD, Moriconi F, van Thiel DH, Ramadori G, Mihm S. Vitamin D status and serum ferritin concentration in chronic hepatitis C virus type 1 infection. J Med Virol. 2013;85:1534–41.

    CAS  Article  Google Scholar 

  16. 16.

    Reiter FP, Hohenester S, Nagel JM, Wimmer R, Artmann R, Wottke L, et al. 1,25-(OH)(2)-vitamin D(3) prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4(-/-) model. Biochem Biophys Res Commun. 2015;459:227–33.

    CAS  Article  Google Scholar 

  17. 17.

    Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A, Brazowski E, et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut. 2011;60:1728–37.

    CAS  Article  Google Scholar 

  18. 18.

    Bjelakovic G, Nikolova D, Bjelakovic M, Gluud C. Vitamin D supplementation for chronic liver diseases in adults. Cochrane Database Syst Rev. 2017;11:CD011564.

    PubMed  Google Scholar 

  19. 19.

    Sprague SM, Llach F, Amdahl M, Taccetta C, Batlle D. Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 2003;63:1483–90.

    CAS  Article  Google Scholar 

  20. 20.

    Reiter FP, Wimmer R, Wottke L, Artmann R, Nagel JM, Carranza MO, et al. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4(-/-) mouse model. World J Hepatol. 2016;8:401–10.

    Article  Google Scholar 

  21. 21.

    Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90:1805–16.

    CAS  Article  Google Scholar 

  22. 22.

    Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA. 1979;76:1274–8.

    CAS  Article  Google Scholar 

  23. 23.

    Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology. 1994;20(1 Pt 1):15–20.

    Google Scholar 

  24. 24.

    Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994;19:1513–20.

    CAS  Article  Google Scholar 

  25. 25.

    Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol. 2006;12:7413–20.

    CAS  Article  Google Scholar 

  26. 26.

    Zhang X, Yu WP, Gao L, Wei KB, Ju JL, Xu JZ. Effects of lipopolysaccharides stimulated Kupffer cells on activation of rat hepatic stellate cells. World J Gastroenterol. 2004;10:610–3.

    CAS  Article  Google Scholar 

  27. 27.

    Lee PC, Yang YY, Lee WP, Lee KC, Hsieh YC, Lee TY, et al. Comparative portal hypotensive effects as propranolol of vitamin D(3) treatment by decreasing intrahepatic resistance in cirrhotic rats. J Gastroenterol Hepatol. 2015;30:628–37.

    CAS  Article  Google Scholar 

  28. 28.

    Kubodera N. A new look at the most successful prodrugs for active vitamin D (D hormone): alfacalcidol and doxercalciferol. Molecules. 2009;14:3869–80.

    CAS  Article  Google Scholar 

  29. 29.

    Abramovitch S, Sharvit E, Weisman Y, Bentov A, Brazowski E, Cohen G, et al. Vitamin D inhibits development of liver fibrosis in an animal model but cannot ameliorate established cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2015;308:G112–120.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Friedrich-Baur-Stiftung and the Förderprogramm für Forschung und Lehre (FöFoLe) of the Ludwig-Maximilians University Munich. We thank Sebastian Reiter for his support in the illustration of the figures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian P. Reiter.

Ethics declarations

Conflict of interest

Michael Trauner and Gerald Denk would like to make the following disclosures: Michael Trauner received a research grant from Intercept, Albireo, Falk, MSD, Takeda, and Gilead; in addition, he holds a patent for the medical use of Nor-UDCA. Gerald Denk received advisory board and lecture fees and travel support from AbbVie, Falk, Gilead, GMP Orphan, Intercept and Novartis. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reiter, F.P., Ye, L., Bösch, F. et al. Antifibrotic effects of hypocalcemic vitamin D analogs in murine and human hepatic stellate cells and in the CCl4 mouse model. Lab Invest 99, 1906–1917 (2019). https://doi.org/10.1038/s41374-019-0310-1

Download citation

Further reading