Blockade of MDM2 with inactive Cas9 prevents epithelial to mesenchymal transition in retinal pigment epithelial cells

Article metrics

Abstract

Epithelial to mesenchymal transition (EMT) plays an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). We aimed to demonstrate the role of mouse double minute 2 (MDM2) in transforming growth factor-beta 2 (TGF-β2)-induced EMT in human retinal pigment epithelial cells (RPEs). Immunofluorescence was used to assess MDM2 expression in epiretinal membranes (ERMs) from patients with PVR. A single guide (sg)RNA targeting the second promoter of MDM2 was cloned into a mutant lentiviral Clustered Regularly Interspaced Short Palindromic Repeats (lentiCRISPR) v2 (D10A and H840A) vector for expressing nuclease dead Cas9 (dCas9)/MDM2-sgRNA in RPEs. In addition, MDM2-sgRNA was also cloned into a pLV-sgRNA-dCas9-Kruppel associated box (KRAB) vector for expressing dCas9 fused with a transcriptional repressor KRAB/MDM2-sgRNA. TGF-β2-induced expression of MDM2 and EMT biomarkers were assessed by quantitative polymerase chain reaction (q-PCR), western blot, or immunofluorescence. Wound-healing and proliferation assays were used to evaluate the role of MDM2 in TGF-β2-induced responses in RPEs. As a result, we found that MDM2 was expressed obviously in ERMs, and that TGF-β2-induced expression of MDM2 and EMT biomarkers Fibronectin, N-cadherin and Vimentin in RPEs. Importantly, we discovered that the dCas9/MDM2-sgRNA blocked TGF-β2-induced expression of MDM2 and the EMT biomarkers without affecting their basal expression, whereas the dCas9-KRAB/MDM2-sgRNA suppressed basal MDM2 expression in RPEs. These cells could not be maintained continuously because their viability was greatly reduced. Next, we found that Nutlin-3, a small molecule blocking the interaction of MDM2 with p53, inhibited TGF-β2-induced expression of Fibronectin and N-cadherin but not Vimentin in RPEs, indicating that MDM2 functions in both p53-dependent and -independent pathways. Finally, our experimental data demonstrated that dCas9/MDM2-sgRNA suppressed TGF-β2-dependent cell proliferation and migration without disturbing the unstimulated basal activity. In conclusion, the CRISPR/dCas9 capability for blocking TGF-β2-induced expression of MDM2 and EMT biomarkers can be exploited for a therapeutic approach to PVR.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ryan SJ. The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol. 1985;100:188–93.

  2. 2.

    Pastor JC, de la Rúa ER, Martín F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res. 2002;21:127–44.

  3. 3.

    Pastor JC. Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 1998;43:3–18.

  4. 4.

    Abrams GW, Azen SP, McCuen BW 2nd, Flynn HW Jr, Lai MY, Ryan SJ. Vitrectomy with silicone oil or long-acting gas in eyes with severe proliferative vitreoretinopathy: results of additional and long-term follow-up. Silicone Study Report 11. Arch Ophthalmol. 1997;115:335–44.

  5. 5.

    Pastor-Idoate S, Rodriguez-Hernandez I, Rojas J, Fernández I, García-Gutiérrez MT, Ruiz-Moreno JM, et al. Genetics on PVRSG: the T309G MDM2 gene polymorphism is a novel risk factor for proliferative vitreoretinopathy. PLoS ONE. 2013;8:e82283.

  6. 6.

    Casaroli-Marano RP, Pagan R, Vilaro S. Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1999;40:2062–72.

  7. 7.

    Charteris DG, Sethi CS, Lewis GP. Proliferative vitreoretinopathy-developments in adjunctive treatment and retinal pathology. Eye. 2002;16:369–74.

  8. 8.

    Heimann H, Bartz-Schmidt KU, Bornfeld N. Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment: a prospective randomized multicenter clinical study. Ophthalmology. 2007;114:2142–54.

  9. 9.

    Leiderman YI, Miller JW. Proliferative vitreoretinopathy: pathobiology and therapeutic targets. Semin Ophthalmol. 2009;24:62–9.

  10. 10.

    Tamiya S, Kaplan HJ. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res. 2016;142:26–31.

  11. 11.

    Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014;123:107–14.

  12. 12.

    Chan CM, Chang HH, Wang VC, Huang CL, Hung CF. Inhibitory effects of resveratrol on PDGF-BB-induced retinal pigment epithelial cell migration via PDGFRβ, PI3K/Akt and MAPK pathways. PLoS ONE. 2013;8:e56819.

  13. 13.

    Zeng K, Chen X, Hu X, Liu X, Xu T, Sun H, et al. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene. 2018;37:5534–51.

  14. 14.

    Guo SJ, Zeng HX, Huang P, Wang S, Xie CH, Li SJ. MiR-508-3p inhibits cell invasion and epithelial-mesenchymal transition by targeting ZEB1 in triple-negative breast cancer. Eur Rev Med Pharmacol Sci. 2018;22:6379–85.

  15. 15.

    Jing W, Dong H, Min M, Runpeng Z, Xuewei X, Ru C, et al. Dependence of artesunate on long noncoding RNA-RP11 to inhibit epithelial-mesenchymal transition of hepatocellular carcinoma. J Cell Biochem. 2019;120:6026–34.

  16. 16.

    Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3.

  17. 17.

    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

  18. 18.

    Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature. 1993;362:857–60.

  19. 19.

    Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA. 1998;95:15608–12.

  20. 20.

    Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR, et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature. 1995;375:694–8.

  21. 21.

    Kong Z, Deng T, Zhang M, Zhao Z, Liu Y, Luo L, et al. β-arrestin1-medieated inhibition of FOXO3a contributes to prostate cancer cell growth in vitro and in vivo. Cancer Sci. 2018;109:1834–42.

  22. 22.

    Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, et al. TGF-beta1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120:290–302.

  23. 23.

    Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H, et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 2006;66:5104–10.

  24. 24.

    Duan Y, Ma G, Huang X, D’Amore PA, Zhang F, Lei H. The clustered, regularly interspaced, short palindromic repeats-associated endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G mutation enhances vitreous-induced expression of MDM2 and proliferation and survival of cells. J Biol Chem. 2016;291:16339–4.

  25. 25.

    Zhou G, Duan Y, Ma G, Wu W, Hu Z, Chen N, et al. Introduction of the MDM2 T309G mutation in primary human retinal epithelial cells enhances experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2017;58:5361–7.

  26. 26.

    Doudna JA, Charpentier E. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

  27. 27.

    Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015;33:102–6.

  28. 28.

    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.

  29. 29.

    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973–6.

  30. 30.

    Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12:1143–9.

  31. 31.

    Manfredi JJ. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev. 2010;24:1580–9.

  32. 32.

    Huang X, Zhou G, Wu W, Ma G, D’Amore PA, Mukai S, et al. Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation. Invest Ophthalmol Vis Sci. 2017;58:1228–36.

  33. 33.

    Medeiros RB, Papenfuss KJ, Hoium B, Coley K, Jadrich J, Goh SK, et al. Novel sequential ChIP and simplified basic ChIP protocols for promoter co-occupancy and target gene identification in human embryonic stem cells. BMC Biotechnol. 2009;9:59.

  34. 34.

    Connor TB Jr., Roberts AB, Sporn MB, Danielpour D, Dart LL, et al. Correlation of fibrosis and transforming growth factor-beta type 2 levels in eyes. J Clin Invest. 1989;83:1661–6.

  35. 35.

    Pennock S, Haddock LJ, Mukai S, Kazlauskas A. Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy. Am J Patho. 2014;184:3052–68.

  36. 36.

    Lin HY, Chen YS, Wang K, Chien HW, Hsieh YH, Yang SF. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression. Mol Vis. 2017;23:900–10.

  37. 37.

    Pennock S, Kim LA, Kazlauskas A. Vascular endothelial cell growth factor A acts via platelet-derived growth factor receptor α to promote viability of cells enduring hypoxia. Mol Cell Biol. 2016;36:2314–27.

  38. 38.

    Lei H, Rheaume MA, Cui J, Mukai S, Maberley D, Samad A, et al. A novel function ofp53: a gatekeeper of retinal detachment. Am J Pathol. 2012;181:866–74.

  39. 39.

    Shi XL, Yang J, Mao N, Wu JH, Ren LF, Yang Y, et al. Nutlin-3-induced redistribution of chromatin-bound IFI16 in human hepatocellular carcinoma cells in vitro is associated with p53 activation. Acta Pharmacol Sin. 2015;36:252–8.

  40. 40.

    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

  41. 41.

    Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin. 2017;10:24.

  42. 42.

    OlinerJD SaikiAY, Caenepeel S. The role of MDM2 amplification and overexpression in Tumorigenesis. Cold Spring Harb Perspect Med. 2016;6:a026336. pii

  43. 43.

    Wang S, Zhao Y, Aguilar A, Bernard D, Yang CY. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect Med. 2017;7:a026245.

  44. 44.

    Momand J, Wu HH, Dasgupta G. MDM2-master regulator of the p53 tumor suppressor protein. Gene. 2000;242:15–29.

  45. 45.

    Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1:1001–8.

  46. 46.

    Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L, et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet. 2006;43:531–3.

  47. 47.

    Jin M, He S, Wörpel V, Ryan SJ, Hinton DR. Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-alpha. Invest Ophthalmol Vis Sci. 2000;41:4324–32.

  48. 48.

    He H, Kuriyan AE, Su CW, Mahabole M, Zhang Y, Zhu YT, et al. Inhibition of proliferation and epithelial mesenchymal transition in retinal pigment epithelial cells by heavy chain-hyaluronan/pentraxin 3. Sci Rep. 2017;7:43736.

  49. 49.

    He T, Guo J, Song H, Zhu H, Di X, Min H, et al. Nutlin-3, an antagonist of MDM2, enhances the radiosensitivity of esophageal squamous cancer with wild-type p53. Pathol Oncol Res. 2018;24:75–81.

  50. 50.

    Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical overview of MDM2/X-targeted therapies. Front Oncol. 2016;6:7.

  51. 51.

    Thomasova D, Mulay SR, Bruns H, Anders HJ. p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia. 2012;14:1097–101.

Download references

Acknowledgements

This work was supported by NIH R01EY012509 (HL), Research to Prevent blindness (HL), NIH National Eye Institute core grant P30EYE003790, and China Postdoctoral Science Foundation 2017M622912 (BL).

Author information

Correspondence to Hetian Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Song, J., Han, H. et al. Blockade of MDM2 with inactive Cas9 prevents epithelial to mesenchymal transition in retinal pigment epithelial cells. Lab Invest (2019) doi:10.1038/s41374-019-0307-9

Download citation