Article | Published:

Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma

Laboratory Investigationvolume 98pages734744 (2018) | Download Citation


The genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen is a powerful tool used to identify therapeutic targets that can be harnessed for cancer treatment. This study aimed to assess the efficacy of genome-wide CRISPR screening to identify druggable genes associated with sorafenib-treated hepatocellular carcinoma (HCC). A genome-scale CRISPR knockout (GeCKO v2) library containing 123,411 single guide RNAs (sgRNAs) was used to identify loss-of-function mutations conferring sorafenib resistance upon HCC cells. Resistance gene screens identified SGOL1 as an indicator of prognosis of patients treated with sorafenib. Of the 19,050 genes tested, the knockout screen identified inhibition of SGOL1 expression as the most-effective genetic suppressor of sorafenib activity. Analysis of the survival of 210 patients with HCC after hepatic resection revealed that high SGOL1 expression shortened overall survival (P = 0.021). Further, matched pairs analysis of the TCGA database revealed that SGOL1 is differentially expressed. When we used a lentivirus Cas9 vector to determine the effect of targeting SGOL1 with a specific sgRNA in HCC cells, we found that SGOL1 expression was efficiently inhibited and that loss of SGOL1 was associated with sorafenib resistance. Further, loss of SGOL1 from HCC cell decreased the cytotoxicity of sorafenib in vivo. We conclude that the CRISPR screen is a powerful tool for therapeutic target analysis of sorafenib treatment and that SGOL1 serves as a druggable target for HCC treated with sorafenib and an indicator of prognosis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Ethics approval and consent to participate. The use of nude mice in this study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Zhejiang University. The informed consent of the HCC samples was obtained from all patients.

These authors contributed equally: Weijian Sun, Bin He, and Beng Yang.


  1. 1.

    Cheng N, Li Y, Han ZG. Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma. Hepatology. 2013;57:1906–18.

  2. 2.

    Han Y, Chen Z, Yang Y, et al. Human CD14+CTLA-4+regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 2014;59:567–79.

  3. 3.

    Abou-Alfa GK. Sorafenib use in hepatocellular carcinoma: more questions than answers. Hepatology. 2014;60:15–18.

  4. 4.

    Camma C, Cabibbo G, Petta S, et al. Cost-effectiveness of sorafenib treatment in field practice for patients with hepatocellular carcinoma. Hepatology. 2013;57:1046–54.

  5. 5.

    Chan SL, Wong AM, Lee K, et al. Personalized therapy for hepatocellular carcinoma: where are we now? Cancer Treat Rev. 2016;45:77–86.

  6. 6.

    Xue HY, Ji LJ, Gao AM, et al. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53:91–97.

  7. 7.

    Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21.

  8. 8.

    Prum RO, Berv JS, Dornburg A, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.

  9. 9.

    Lyman GH, Moses HL. Biomarker tests for molecularly targeted therapies--the key to unlocking precision medicine. N Engl J Med. 2016;375:4–6.

  10. 10.

    Bonham VL, Callier SL, Royal CD. Will precision medicine move us beyond race? N Engl J Med. 2016;374:2003–5.

  11. 11.

    Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med. 2015;372:2229–34.

  12. 12.

    Vicini P, Fields O, Lai E, et al. Precision medicine in the age of big data: the present and future role of large-scale unbiased sequencing in drug discovery and development. Clin Pharmacol Ther. 2016;99:198–207.

  13. 13.

    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.

  14. 14.

    Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol. 2014;11:645–7.

  15. 15.

    Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

  16. 16.

    Matsuura S, Kahyo T, Shinmura K, et al. SGOL1 variant B induces abnormal mitosis and resistance to taxane in non-small cell lung cancers. Sci Rep. 2013;3:3012.

  17. 17.

    Xu X, Lu D, Ling Q, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut. 2016;65:1035–41.

  18. 18.

    Liu Z, Chen P, Gao H, et al. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell. 2014;26:106–20.

  19. 19.

    Steinhart Z, Pavlovic Z, Chandrashekhar M, et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med. 2017;23:60–68.

  20. 20.

    Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

  21. 21.

    Gao Y, Wang Z, Hao Q, et al. Loss of ERalpha induces amoeboid-like migration of breast cancer cells by downregulating vinculin. Nat Commun. 2017;8:14483.

  22. 22.

    Ling S, Xie H, Yang F, et al. Metformin potentiates the effect of arsenic trioxide suppressing intrahepatic cholangiocarcinoma: roles of p38 MAPK, ERK3, and mTORC1. J Hematol Oncol. 2017;10:59.

  23. 23.

    Xiao H, Cheng S, Tong R, et al. BAG3 regulates epithelial-mesenchymal transition and angiogenesis in human hepatocellular carcinoma. Lab Invest. 2014;94:252–61.

  24. 24.

    Zhou Y, Zhu S, Cai C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509:487–91.

  25. 25.

    Sohn W, Paik YH, Cho JY, et al. Sorafenib therapy for hepatocellular carcinoma with extrahepatic spread: treatment outcome and prognostic factors. J Hepatol. 2015;62:1112–21.

  26. 26.

    Colagrande S, Inghilesi AL, Aburas S, et al. Challenges of advanced hepatocellular carcinoma. World J Gastroenterol. 2016;22:7645–59.

  27. 27.

    Kahyo T, Iwaizumi M, Shinmura K, et al. A novel tumor-derived SGOL1 variant causes abnormal mitosis and unstable chromatid cohesion. Oncogene. 2011;30:4453–63.

  28. 28.

    Chetaille P, Preuss C, Burkhard S, et al. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet. 2014;46:1245–9.

  29. 29.

    Kim MS, An CH, Yoo NJ, et al. Frameshift mutations of chromosome cohesion-related genes SGOL1 and PDS5B in gastric and colorectal cancers with high microsatellite instability. Hum Pathol. 2013;44:2234–40.

  30. 30.

    Wang LH, Yen CJ, Li TN, et al. Sgo1 is a potential therapeutic target for hepatocellular carcinoma. Oncotarget. 2015;6:2023–33.

Download references


We are grateful to Xiao-Hu Zhou and Xiao-Lei Zhang for technical assistance and helpful suggestions.


This work was supported by Innovative Research Groups of the National Natural Science Foundation of China (No. 81421062), the Major program of National Natural Science Foundation of China (No.91542205), the National S&T Major Project of China (No. 2012ZX10002017), Zhejiang Provincial Natural Science Foundation of China (LY18H160046), and Zhejiang Medical Science Foundation (2018KY532).

Author information

Author notes

  1. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases.


  1. Department of Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, China

    • Weijian Sun
    •  & Xian Shen
  2. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China

    • Weijian Sun
    • , Bin He
    • , Beng Yang
    • , Wendi Hu
    • , Shaobing Cheng
    • , Heng Xiao
    • , Zhengjie Yang
    • , Xiaoyu Wen
    • , Lin Zhou
    • , Haiyang Xie
    • , Jian Wu
    •  & Shusen Zheng
  3. Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, 310003, China

    • Weijian Sun
    • , Bin He
    • , Beng Yang
    • , Wendi Hu
    • , Shaobing Cheng
    • , Heng Xiao
    • , Zhengjie Yang
    • , Xiaoyu Wen
    • , Lin Zhou
    • , Haiyang Xie
    • , Jian Wu
    •  & Shusen Zheng
  4. Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China

    • Weijian Sun
    • , Bin He
    • , Beng Yang
    • , Wendi Hu
    • , Shaobing Cheng
    • , Heng Xiao
    • , Zhengjie Yang
    • , Xiaoyu Wen
    • , Lin Zhou
    • , Haiyang Xie
    • , Jian Wu
    •  & Shusen Zheng


  1. Search for Weijian Sun in:

  2. Search for Bin He in:

  3. Search for Beng Yang in:

  4. Search for Wendi Hu in:

  5. Search for Shaobing Cheng in:

  6. Search for Heng Xiao in:

  7. Search for Zhengjie Yang in:

  8. Search for Xiaoyu Wen in:

  9. Search for Lin Zhou in:

  10. Search for Haiyang Xie in:

  11. Search for Xian Shen in:

  12. Search for Jian Wu in:

  13. Search for Shusen Zheng in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Jian Wu or Shusen Zheng.

Electronic supplementary material

About this article

Publication history






Further reading