Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The long noncoding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes

Abstract

Increasing evidence indicates that long noncoding RNAs (lncRNAs) have important roles in various physiological processes and dysfunction of lncRNAs could be a prevalent cause in human diseases. Here we functionally characterized the nuclear-enriched lncRNA SNHG1, which is highly expressed in multiple types of cancer. We also provide evidence that SNHG1 promotes cancer cell growth by regulating gene expression both in cis and in trans. SNHG1 was involved in the AKT signaling pathway as it promotes the neighboring transcription of the protein-coding gene SLC3A2 in cis by binding the Mediator complex to facilitate the establishment of enhancer–promoter interaction. In trans, SNHG1 directly interacted with central domain of FUBP1 and antagonize the binding of FBP-interacting repressor to FUBP1, thereby coordinating the expression of the oncogene MYC. Collectively, our findings demonstrate that lncRNA SNHG1 can function both in cis and in trans with distinct mechanisms to regulate transcription, promoting tumorigenesis and cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    Article  CAS  Google Scholar 

  2. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477: 295–300.

    Article  CAS  Google Scholar 

  3. Herriges MJ, Swarr DT, Morley MP, Rathi KS, Peng T, Stewart KM et al. Long noncoding RNAs are spatially correlated with transcription factors and regulate lung development. Genes Dev 2014; 28: 1363–1379.

    Article  CAS  Google Scholar 

  4. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 2013; 45: 1392–1398.

    Article  CAS  Google Scholar 

  5. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  Google Scholar 

  6. Lee JT, Bartolomei MS . X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152: 1308–1323.

    Article  CAS  Google Scholar 

  7. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    Article  CAS  Google Scholar 

  8. Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J 2014; 33: 296–311.

    Article  CAS  Google Scholar 

  9. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–1076.

    Article  CAS  Google Scholar 

  10. Yuan J, Yue HY, Zhang MY, Luo JJ, Liu LH, Wu W et al. Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer. Oncotarget 2016; 7: 8131–8142.

    PubMed  PubMed Central  Google Scholar 

  11. Tycowski KT, Shu MD, Steitz JA . Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 1994; 266: 1558–1561.

    Article  CAS  Google Scholar 

  12. Allen BL, Taatjes DJ . The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16: 155–166.

    Article  CAS  Google Scholar 

  13. Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y . CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004; 447: 532–542.

    Article  CAS  Google Scholar 

  14. Fenczik CA, Sethi T, Ramos JW, Hughes PE, Ginsberg MH . Complementation of dominant suppression implicates CD98 in integrin activation. Nature 1997; 390: 81–85.

    Article  CAS  Google Scholar 

  15. Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH . CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA 2005; 102: 355–360.

    Article  CAS  Google Scholar 

  16. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 2016; 18: 637–652.

    Article  CAS  Google Scholar 

  17. Xiao T, Liu L, Li H, Sun Y, Luo H, Li T et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPalpha. Stem Cell Rep 2015; 5: 856–865.

    Article  CAS  Google Scholar 

  18. Rinn JL, Chang HY . Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145–166.

    Article  CAS  Google Scholar 

  19. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 2015; 521: 232–236.

    Article  CAS  Google Scholar 

  20. Chung HJ, Liu J, Dundr M, Nie Z, Sanford S, Levens D . FBPs are calibrated molecular tools to adjust gene expression. Mol Cell Biol 2006; 26: 6584–6597.

    Article  CAS  Google Scholar 

  21. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev 1994; 8: 465–480.

    Article  CAS  Google Scholar 

  22. Liu J, Kouzine F, Nie Z, Chung HJ, Elisha-Feil Z, Weber A et al. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J 2006; 25: 2119–2130.

    Article  CAS  Google Scholar 

  23. Liu J, He L, Collins I, Ge H, Libutti D, Li J et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 2000; 5: 331–341.

    Article  CAS  Google Scholar 

  24. Wapinski O, Chang HY . Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21: 354–361.

    Article  CAS  Google Scholar 

  25. Liu P, Cheng H, Roberts TM, Zhao JJ . Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8: 627–644.

    Article  CAS  Google Scholar 

  26. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009; 9: 550–562.

    Article  CAS  Google Scholar 

  27. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  28. Takahashi K, Yamanaka S . A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 2016; 17: 183–193.

    Article  CAS  Google Scholar 

  29. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512: 82–86.

    Article  CAS  Google Scholar 

  30. Kim T, Jeon YJ, Cui R, Lee JH, Peng Y, Kim SH et al. Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst 2015. 107.

  31. Avigan MI, Strober B, Levens D . A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J Biol Chem 1990; 265: 18538–18545.

    CAS  PubMed  Google Scholar 

  32. Liu J, Akoulitchev S, Weber A, Ge H, Chuikov S, Libutti D et al. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 2001; 104: 353–363.

    Article  CAS  Google Scholar 

  33. Zhang J, Chen QM . Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2013; 32: 2907–2916.

    Article  CAS  Google Scholar 

  34. Luo H, Sun Y, Wei G, Luo J, Yang X, Liu W et al. Functional characterization of long noncoding RNA Lnc_bc060912 in human lung carcinoma cells. Biochemistry 2015; 54: 2895–2902.

    Article  CAS  Google Scholar 

  35. Miele A, Dekker J . Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C). Methods Mol Biol 2009; 464: 105–121.

    Article  Google Scholar 

  36. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51: 792–806.

    Article  CAS  Google Scholar 

  37. Roberts TC, Hart JR, Kaikkonen MU, Weinberg MS, Vogt PK, Morris KV . Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR. Nat Protoc 2015; 10: 1198–1211.

    Article  CAS  Google Scholar 

  38. Chu C, Quinn J, Chang HY . Chromatin isolation by RNA purification (ChIRP). J Vis Exp 2012; 61: 3912.

    Google Scholar 

  39. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY . Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 2011; 44: 667–678.

    Article  CAS  Google Scholar 

  40. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Zushen Fan, Dr Greta Pintacuda and Dr Tianyi Zhang for helpful suggestions and critical reading of this manuscript and Professors Yajun Guo and Mingzhou Guo of Chinese PLA General Hospital and Youyong Lu of Peking University Cancer Hospital and Institute for kindly providing clinical samples. We also thank Dr Junbing Wu, Dongpeng Wang, Shuheng Wu and Bao Zhang for helping with animal experiments. This work was supported by grants from the National Natural Science Foundation of China (31520103905, 31401098) and the National High Technology Research and Development Program (‘863’ Program of China) 2015AA020108. The raw sequencing data reported in this work have been deposited in GEO (GSE85842).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wei, G., Luo, H. et al. The long noncoding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes. Oncogene 36, 6774–6783 (2017). https://doi.org/10.1038/onc.2017.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.286

This article is cited by

Search

Quick links