Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress

A Corrigendum to this article was published on 27 June 2016

This article has been updated

Abstract

The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

  • 28 July 2016

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

References

  1. Derheimer FA, Kastan MB . Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 2010; 584: 3675–3681.

    Article  CAS  Google Scholar 

  2. Lee JH, Paull TT . Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007; 26: 7741–7748.

    Article  CAS  Google Scholar 

  3. Lee JH, Paull TT . ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005; 308: 551–554.

    Article  CAS  Google Scholar 

  4. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 2003; 22: 5612–5621.

    Article  CAS  Google Scholar 

  5. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  Google Scholar 

  6. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 2005; 7: 675–685.

    Article  CAS  Google Scholar 

  7. Kanu N, Behrens A . ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J 2007; 26: 2933–2941.

    Article  CAS  Google Scholar 

  8. McNees CJ, Conlan LA, Tenis N, Heierhorst J . ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J 2005; 24: 2447–2457.

    Article  CAS  Google Scholar 

  9. Kanu N, Behrens A . ATMINistrating ATM signalling: regulation of ATM by ATMIN. Cell Cycle 2008; 7: 3483–3486.

    Article  CAS  Google Scholar 

  10. Schmidt L, Wiedner M, Velimezi G, Prochazkova J, Owusu M, Bauer S et al. ATMIN is required for the ATM-mediated signaling and recruitment of 53BP1 to DNA damage sites upon replication stress. DNA Repair 2014; 24: 122–130.

    Article  CAS  Google Scholar 

  11. Zeman MK, Cimprich KA . Causes and consequences of replication stress. Nat Cell Biol 2013; 16: 2–9.

    Article  Google Scholar 

  12. Baumann C, Korner R, Hofmann K, Nigg EA . PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 2007; 128: 101–114.

    Article  CAS  Google Scholar 

  13. Chan KL, Palmai-Pallag T, Ying S, Hickson ID . Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 2009; 11: 753–760.

    Article  CAS  Google Scholar 

  14. Chan KL, Hickson ID . New insights into the formation and resolution of ultra-fine anaphase bridges. Semin Cell Dev Biol 2011; 22: 906–912.

    Article  CAS  Google Scholar 

  15. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 2011; 193: 97–108.

    Article  CAS  Google Scholar 

  16. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 2011; 13: 243–253.

    Article  CAS  Google Scholar 

  17. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S . RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002; 419: 135–141.

    Article  CAS  Google Scholar 

  18. Ulrich HD . Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair 2009; 8: 461–469.

    Article  CAS  Google Scholar 

  19. Crosetto N, Bienko M, Hibbert RG, Perica T, Ambrogio C, Kensche T et al. Human Wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J Biol Chem 2008; 283: 35173–35185.

    Article  CAS  Google Scholar 

  20. Kannouche PL, Wing J, Lehmann AR . Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 2004; 14: 491–500.

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang S, Lin SH, Wang X, Wu L, Lee EY et al. Structure of monoubiquitinated PCNA: implications for DNA polymerase switching and Okazaki fragment maturation. Cell Cycle 2012; 11: 2128–2136.

    Article  CAS  Google Scholar 

  22. Saugar I, Parker JL, Zhao S, Ulrich HD . The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res 2012; 40: 245–257.

    Article  CAS  Google Scholar 

  23. Olcina MM, Foskolou IP, Anbalagan S, Senra JM, Pires IM, Jiang Y et al. Replication stress and chromatin context link ATM activation to a role in DNA replication. Mol Cell 2013; 52: 758–766.

    Article  CAS  Google Scholar 

  24. Glover TW, Berger C, Coyle J, Echo B . DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 1984; 67: 136–142.

    Article  CAS  Google Scholar 

  25. Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 2010; 29: 943–955.

    Article  CAS  Google Scholar 

  26. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T et al. Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 2007; 9: 675–682.

    Article  CAS  Google Scholar 

  27. Payne BT, van Knippenberg IC, Bell H, Filipe SR, Sherratt DJ, McGlynn P . Replication fork blockage by transcription factor-DNA complexes in Escherichia coli. Nucleic Acids Res 2006; 34: 5194–5202.

    Article  CAS  Google Scholar 

  28. Bish RA, Myers MP . Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J Biol Chem 2007; 282: 23184–23193.

    Article  CAS  Google Scholar 

  29. Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA 2008; 105: 16125–16130.

    Article  CAS  Google Scholar 

  30. Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA . Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 2005; 19: 1040–1052.

    Article  CAS  Google Scholar 

  31. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494: 492–496.

    Article  CAS  Google Scholar 

  32. Chan KL, North PS, Hickson ID . BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J 2007; 26: 3397–3409.

    Article  CAS  Google Scholar 

  33. Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P . ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 2010; 29: 3156–3169.

    Article  CAS  Google Scholar 

  34. Davalos AR, Kaminker P, Hansen RK, Campisi J . ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 2004; 3: 1579–1586.

    Article  CAS  Google Scholar 

  35. Trenz K, Smith E, Smith S, Costanzo V . ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J 2006; 25: 1764–1774.

    Article  CAS  Google Scholar 

  36. Bish RA, Fregoso OI, Piccini A, Myers MP . Conjugation of complex polyubiquitin chains to WRNIP1. J Proteome Res 2008; 7: 3481–3489.

    Article  CAS  Google Scholar 

  37. Gamper AM, Choi S, Matsumoto Y, Banerjee D, Tomkinson AE, Bakkenist CJ . ATM protein physically and functionally interacts with proliferating cell nuclear antigen to regulate DNA synthesis. J Biol Chem 2012; 287: 12445–12454.

    Article  CAS  Google Scholar 

  38. Kawabe Y, Branzei D, Hayashi T, Suzuki H, Masuko T, Onoda F et al. A novel protein interacts with the Werner's syndrome gene product physically and functionally. J Biol Chem 2001; 276: 20364–20369.

    Article  CAS  Google Scholar 

  39. Yoshimura A, Seki M, Kanamori M, Tateishi S, Tsurimoto T, Tada S et al. Physical and functional interaction between WRNIP1 and RAD18. Genes Genet Syst 2009; 84: 171–178.

    Article  CAS  Google Scholar 

  40. Loizou JI, Sancho R, Kanu N, Bolland DJ, Yang F, Rada C et al. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell 2011; 19: 587–600.

    Article  CAS  Google Scholar 

  41. Blackford AN, Schwab RA, Nieminuszczy J, Deans AJ, West SC, Niedzwiedz W . The DNA translocase activity of FANCM protects stalled replication forks. Hum Mol Genet 2012; 21: 2005–2016.

    Article  CAS  Google Scholar 

  42. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D . Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 2011; 25: 1320–1327.

    Article  CAS  Google Scholar 

  43. Fugger K, Mistrik M, Neelsen KJ, Yao Q, Zellweger R, Kousholt AN et al. FBH1 catalyzes regression of stalled replication forks. Cell Rep e-pub ahead of print 10 March 2015.

  44. Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T et al. MUS81 promotes common fragile site expression. Nat Cell Biol 2013; 15: 1001–1007.

    Article  CAS  Google Scholar 

  45. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  Google Scholar 

  46. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  Google Scholar 

  47. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  Google Scholar 

  48. Parker JL, Ulrich HD . In vitro PCNA modification assays. Methods Mol Biol 2012; 920: 569–589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support was given from Mass Spectrometry, Bioinformatics and Biostatistics and the Equipment Park in the Cancer Research UK London Research Institute (now part of the Francis Crick Institute). We are grateful to JL Parker in the Ulrich laboratory for preparing ubiquitinated PCNA. R Bish, I Dikic, M Myers, E Soutoglou and A Lehmann kindly provided experimental materials. NK is funded by the Breast Cancer Research Foundation. TZ was financially supported by an A*STAR NSS-PhD scholarship (Singapore). This work was supported by an ERC grant (281661 ATMINDDR) to AB.

Author contributions

NK designed and performed most of the experiments and analysed the data. TZ, RAB, AC, JC and CDC performed experiments. EG, HNP, EA and CS provided technical assistance. SS, LG and HDU provided reagents and technical assistance. NK and AB wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Behrens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanu, N., Zhang, T., Burrell, R. et al. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 35, 4009–4019 (2016). https://doi.org/10.1038/onc.2015.427

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.427

This article is cited by

Search

Quick links