Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of therapeutic targets for glioblastoma by network analysis

Subjects

Abstract

Glioblastoma can originate from terminally differentiated astrocytes and neurons, which can dedifferentiate to a stem cell-like state upon transformation. In this study, we confirmed that transformed dedifferentiated astrocytes and neurons acquired a stem/progenitor cell state, although they still retained gene expression memory from their parental cell. Transcriptional network analysis on these cells identified upregulated genes in three main pathways: Wnt signaling, cell cycle and focal adhesion with the gene Spp1, also known as osteopontin (OPN) serving as a key common node connecting these three pathways. Inhibition of OPN blocked the formation of neurospheres, affected the proliferative capacity of transformed neurons and reduced the expression levels of neural stem cell markers. Specific inhibition of OPN in both murine and human glioma tumors prolonged mice survival. We conclude that OPN is an important player in dedifferentiation of cells during tumor formation, hence its inhibition can be a therapeutic target for glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  3. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154: 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338: 1080–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O . Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci USA 2013; 110: 3937–3942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    Article  CAS  PubMed  Google Scholar 

  7. Bhargava V, Ko P, Willems E, Mercola M, Subramaniam S . Quantitative transcriptomics using designed primer-based amplification. Sci Rep 2013; 3: 1740.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao W, Ji X, Zhang F, Li L, Ma L . Embryonic stem cell markers. Molecules 2012; 17: 6196–6236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008; 28: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polakis P . Wnt signaling in cancer. Cold Spring Harb Perspect Biol 2012; 4: a008052.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Holland JD, Klaus A, Garratt AN, Birchmeier W . Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013; 25: 254–264.

    Article  CAS  PubMed  Google Scholar 

  12. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang DD, Bordey A . The astrocyte odyssey. Prog Neurobiol 2008; 86: 342–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003; 31: 374–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res 2013; 41: D816–D823.

    Article  CAS  PubMed  Google Scholar 

  16. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jan HJ, Lee CC, Shih YL, Hueng DY, Ma HI, Lai JH et al. Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro Oncol 2010; 12: 58–70.

    Article  CAS  PubMed  Google Scholar 

  18. Mason CK, McFarlane S, Johnston PG, Crowe P, Erwin PJ, Domostoj MM et al. Agelastatin A: a novel inhibitor of osteopontin-mediated adhesion, invasion, and colony formation. Mol Cancer Ther 2008; 7: 548–558.

    Article  CAS  PubMed  Google Scholar 

  19. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5: 111–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC . Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PloS One 2010; 5: e8975.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR . Transcriptional signature and memory retention of human-induced pluripotent stem cells. PloS One 2009; 4: e7076.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 2011; 13: 541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedmann-Morvinski D, Verma IM . Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014; 15: 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  26. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  PubMed  Google Scholar 

  27. Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS . Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wai PY, Kuo PC . The role of Osteopontin in tumor metastasis. J Surg Res 2004; 121: 228–241.

    Article  CAS  PubMed  Google Scholar 

  29. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K et al. CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 1999; 59: 219–226.

    CAS  PubMed  Google Scholar 

  30. Weber GF, Ashkar S, Glimcher MJ, Cantor H . Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509–512.

    Article  CAS  PubMed  Google Scholar 

  31. Weber GF . The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 2001; 1552: 61–85.

    Article  CAS  PubMed  Google Scholar 

  32. Rangaswami H, Bulbule A, Kundu GC . Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 2006; 16: 79–87.

    Article  CAS  PubMed  Google Scholar 

  33. Bache M, Kappler M, Wichmann H, Rot S, Hahnel A, Greither T et al. Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients. BMC Cancer 2010; 10: 132.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sreekanthreddy P, Srinivasan H, Kumar DM, Nijaguna MB, Sridevi S, Vrinda M et al. Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis. Cancer Epidemiol Biomarkers Prev 2010; 19: 1409–1422.

    Article  CAS  PubMed  Google Scholar 

  35. Atai NA, Bansal M, Lo C, Bosman J, Tigchelaar W, Bosch KS et al. Osteopontin is up-regulated and associated with neutrophil and macrophage infiltration in glioblastoma. Immunology 2011; 132: 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamour V, Le Mercier M, Lefranc F, Hagedorn M, Javerzat S, Bikfalvi A et al. Selective osteopontin knockdown exerts anti-tumoral activity in a human glioblastoma model. Int J Cancer 2010; 126: 1797–1805.

    Article  CAS  PubMed  Google Scholar 

  37. Yamaguchi Y, Shao Z, Sharif S, Du XY, Myles T, Merchant M et al. Thrombin-cleaved fragments of osteopontin are overexpressed in malignant glial tumors and provide a molecular niche with survival advantage. J Biol Chem 2013; 288: 3097–3111.

    Article  CAS  PubMed  Google Scholar 

  38. Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ, Pitter KL et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 2014; 14: 357–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9: 157–173.

    Article  CAS  PubMed  Google Scholar 

  40. McCarthy KD, de Vellis J . Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980; 85: 890–902.

    Article  CAS  PubMed  Google Scholar 

  41. Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA . Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 1995; 15: 805–819.

    Article  CAS  PubMed  Google Scholar 

  42. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol 2011; 29: 79–83.

    Article  CAS  PubMed  Google Scholar 

  44. Ikawa M, Tanaka N, Kao WW, Verma IM . Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther 2003; 8: 666–673.

    Article  CAS  PubMed  Google Scholar 

  45. Bhargava V, Head SR, Ordoukhanian P, Mercola M, Subramaniam S . Technical variations in low-input RNA-seq methodologies. Sci Rep 2014; 4: 3678.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Langmead B . Aligning short sequencing reads with Bowtie. Current Protoc Bioinformatics 2010 (Chapter 11): Unit 11 17.

  47. Jain N, Thatte J, Braciale T, Ley K, O'Connell M, Lee JK . Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 2003; 19: 1945–1951.

    Article  CAS  PubMed  Google Scholar 

  48. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1: 269–277.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gabriela Estepa for her technical help and Ruben Alvarez Rodriguez for designing the inducible miRNA lentivector. IMV is an American Cancer Society Professor of Molecular Biology, and holds the Irwin and Joan Jacobs Chair in Exemplary Life Science. This work was supported in part by grants from the NIH (HL053670) (to IM Verma and D Friedmann-Morvinski), Cancer Center Core Grant (P30 CA014195-38), the H.N. and Frances C. Berger Foundation, and the Leona M. and Harry B. Helmsley Charitable Trust grant #2012-PG-MED002 (to IM Verma). S Subramaniam is supported by National Institutes of Health (NIH) National Heart, Lung and Blood Institute Grant HL087375, HL106579, HL108735, the National Science Foundation (NSF) grants DBI-0835541 and STC-0939370. V Bhargava was the recipient of a California Institute for Regenerative Medicine (CIRM) Graduate Fellowship (T1-00003 and TG2-01154, Interdisciplinary Stem Cell Training Program at UCSD). Accession Code. Gene Expression Omnibus: GSE64411 (sequencing read data).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I M Verma or S Subramaniam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedmann-Morvinski, D., Bhargava, V., Gupta, S. et al. Identification of therapeutic targets for glioblastoma by network analysis. Oncogene 35, 608–620 (2016). https://doi.org/10.1038/onc.2015.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.119

This article is cited by

Search

Quick links