Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TIMP3 controls cell fate to confer hepatocellular carcinoma resistance

Abstract

Inflammation enables human cancers and is a critical promoter of hepatocellular carcinoma (HCC). TIMP3 (Tissue inhibitor of metalloproteinase 3), a natural metalloproteinase inhibitor, controls cytokine and growth factor bioavailability to keep inflammation in check and regulate cell survival in the liver. TIMP3 is also found silenced in human cancers. We therefore tested whether Timp3 affects HCC predisposition. Remarkably, genetic loss of Timp3 protected from carcinogen-induced HCC through the immediate engagement of several tumor suppressor pathways, while tumor necrosis factor (TNF) signaling was dispensable for this protection. All wild-type mice developed HCC by 12 months, whereas HCC incidence was reduced to 33% at 12 months and 57% at 15 months in Timp3 null mice. Upon acute carcinogen treatment the deficient livers exhibited greater cytokine expression, but lower cell death and higher hepatocyte senescence. We found that precocious activation of p53, p38 and Notch preceded senescence and hepatic cell differentiation, and these events were conserved throughout tumorigenesis. Timp3-deficient mouse embryo fibroblasts also responded to carcinogen by favoring senescence over apoptosis. We conclude that Timp3 status determines p53, p38 and Notch coactivation to instruct hepatic cell fate and transformation and uncover mechanisms that are protective even within a pro-inflammatory microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. El-Serag HB . Hepatocellular carcinoma. New Engl J Med 2011; 365: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  2. Laurent-Puig P, Zucman-Rossi J . Genetics of hepatocellular tumors. Oncogene 2006; 25: 3778–3786.

    Article  CAS  PubMed  Google Scholar 

  3. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Farazi PA, DePinho RA . Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674–687.

    Article  CAS  PubMed  Google Scholar 

  5. Hui L, Bakiri L, Mairhorfer A, Schweifer N, Haslinger C, Kenner L et al. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 2007; 39: 741–749.

    Article  CAS  PubMed  Google Scholar 

  6. Qi R, An H, Yu Y, Zhang M, Liu S, Xu H et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 2003; 63: 8323–8329.

    CAS  PubMed  Google Scholar 

  7. Mohammed FF, Smookler DS, Taylor SE, Fingleton B, Kassiri Z, Sanchez OH et al. Abnormal TNF activity in Timp3-/- mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 2004; 36: 969–977.

    Article  CAS  PubMed  Google Scholar 

  8. Smookler DS, Mohammed FF, Kassiri Z, Duncan GS, Mak TW, Khokha R . Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 2006; 176: 721–725.

    Article  CAS  PubMed  Google Scholar 

  9. Murthy A, Defamie V, Smookler DS, Di Grappa MA, Horiuchi K, Federici M et al. Ectodomain shedding of EGFR ligands and TNFR1 dictates hepatocyte apoptosis during fulminant hepatitis in mice. J Clin Invest 2010; 120: 2731–2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fiorentino L, Vivanti A, Cavalera M, Marzano V, Ronci M, Fabrizi M et al. Increased tumor necrosis factor alpha-converting enzyme activity induces insulin resistance and hepatosteatosis in mice. Hepatology 2010; 51: 103–110.

    Article  CAS  PubMed  Google Scholar 

  11. Menghini R, Menini S, Amoruso R, Fiorentino L, Casagrande V, Marzano V et al. Tissue inhibitor of metalloproteinase 3 deficiency causes hepatic steatosis and adipose tissue inflammation in mice. Gastroenterology 2009; 136: 663–72 e4.

    Article  CAS  PubMed  Google Scholar 

  12. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385: 729–733.

    Article  CAS  PubMed  Google Scholar 

  13. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC et al. An essential role for ectodomain shedding in mammalian development. Science 1998; 282: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  14. Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R et al. Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol 2008; 381: 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  15. Black RA . TIMP3 checks inflammation. Nat Genet 2004; 36: 934–935.

    Article  CAS  PubMed  Google Scholar 

  16. Bachman KE, Herman JG, Corn PG, Merlo A, Costello JF, Cavenee WK et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 1999; 59: 798–802.

    CAS  PubMed  Google Scholar 

  17. Catasus L, Pons C, Munoz J, Espinosa I, Prat J . Promoter hypermethylation contributes to TIMP3 down-regulation in high stage endometrioid endometrial carcinomas. Histopathology 2013; 62: 632–641.

    Article  PubMed  Google Scholar 

  18. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009; 16: 498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 2010; 29: 1787–1797.

    Article  CAS  PubMed  Google Scholar 

  20. Masson D, Rioux-Leclercq N, Fergelot P, Jouan F, Mottier S, Theoleyre S et al. Loss of expression of TIMP3 in clear cell renal cell carcinoma. Eur J Cancer 2010; 46: 1430–1437.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 2005; 85: 165–175.

    Article  CAS  PubMed  Google Scholar 

  22. Maeda S, Kamata H, Luo JL, Leffert H, Karin M . IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121: 977–990.

    Article  CAS  PubMed  Google Scholar 

  23. Verna L, Whysner J, Williams GM . N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 1996; 71: 57–81.

    Article  CAS  PubMed  Google Scholar 

  24. Kang JS, Wanibuchi H, Morimura K, Gonzalez FJ, Fukushima S . Role of CYP2E1 in diethylnitrosamine-induced hepatocarcinogenesis in vivo. Cancer Res 2007; 67: 11141–11146.

    Article  CAS  PubMed  Google Scholar 

  25. Mah LJ, El-Osta A, Karagiannis TC . gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24: 679–686.

    Article  CAS  PubMed  Google Scholar 

  26. Vesselinovitch SD, Mihailovich N . Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res 1983; 43: 4253–4259.

    CAS  PubMed  Google Scholar 

  27. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11: 119–132.

    Article  CAS  PubMed  Google Scholar 

  28. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461–466.

    Article  CAS  PubMed  Google Scholar 

  29. Poehlmann A, Roessner A . Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 2010; 206: 591–601.

    Article  CAS  PubMed  Google Scholar 

  30. Murthy A, Shao YW, Narala SR, Molyneux SD, Zuniga-Pflucker JC, Khokha R . Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 2012; 36: 105–119.

    Article  CAS  PubMed  Google Scholar 

  31. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F et al. Notch signaling controls liver development by regulating biliary differentiation. Development 2009; 136: 1727–1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136: 2325–2333.

    Article  PubMed  Google Scholar 

  33. Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B . Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 2009; 50: 871–879.

    Article  CAS  PubMed  Google Scholar 

  34. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996; 274: 1379–1383.

    Article  CAS  PubMed  Google Scholar 

  35. Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M et al. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 2003; 97: 3017–3026.

    Article  CAS  PubMed  Google Scholar 

  36. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317: 121–124.

    CAS  PubMed  Google Scholar 

  37. Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 2000; 192: 1809–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  39. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  40. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han J, Sun P . The pathways to tumor suppression via route p38. Trends Biochem Sci 2007; 32: 364–371.

    Article  CAS  PubMed  Google Scholar 

  42. Bulavin DV, Fornace AJ Jr . p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 2004; 92: 95–118.

    Article  CAS  PubMed  Google Scholar 

  43. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu P, Liu J, Sakaki-Yumoto M, Derynck R . TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012; 5 ra34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dolado I, Nebreda AR . Regulation of tumorigenesis by p38αMAP kinase. In: F Posas, AR Nebreda (eds). Topics in Current Genetics: Stress-Activated Protein Kinases.. Springer-Verlag: Berlin, Heidelberg, 2008, pp 99–128.

    Chapter  Google Scholar 

  46. Hui L, Bakiri L, Stepniak E, Wagner EF . p38alpha: a suppressor of cell proliferation and tumorigenesis. Cell Cycle 2007; 6: 2429–2433.

    Article  CAS  PubMed  Google Scholar 

  47. Lavin MF, Gueven N . The complexity of p53 stabilization and activation. Cell Death Differ 2006; 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  48. Boggs K, Henderson B, Reisman D . RBP-Jkappa binds to and represses transcription of the p53 tumor suppressor gene. Cell Biol Int 2009; 33: 318–324.

    Article  CAS  PubMed  Google Scholar 

  49. Yugawa T, Handa K, Narisawa-Saito M, Ohno S, Fujita M, Kiyono T . Regulation of Notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 2007; 27: 3732–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandinova A, Lefort K, Tommasi di Vignano A, Stonely W, Ostano P, Chiorino G et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J 2008; 27: 1243–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427–3436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohler C, Bell AW, Bowen WC, Monga SP, Fleig W, Michalopoulos GK . Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 2004; 39: 1056–1065.

    Article  PubMed  Google Scholar 

  53. Jeliazkova P, Jors S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013; 57: 2469–2479.

    Article  CAS  PubMed  Google Scholar 

  54. Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B et al. Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 2013; 57: 1607–1619.

    Article  CAS  PubMed  Google Scholar 

  55. Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 2012; 143: 1660–1669 e7.

    Article  CAS  PubMed  Google Scholar 

  56. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD . Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001; 61: 249–255.

    CAS  PubMed  Google Scholar 

  58. Sun H, Gulbagci NT, Taneja R . Analysis of growth properties and cell cycle regulation using mouse embryonic fibroblast cells. Methods Mol Biol 2007; 383: 311–319.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Paul Waterhouse and Dr Razqallah Hakem for their constructive criticism of the manuscript. This work was supported by grants from the Canadian Institutes of Health Research to RK. VD was supported by the Helena H Lam and Fondation pour la Recherche Médicale fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Khokha.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defamie, V., Sanchez, O., Murthy, A. et al. TIMP3 controls cell fate to confer hepatocellular carcinoma resistance. Oncogene 34, 4098–4108 (2015). https://doi.org/10.1038/onc.2014.339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.339

This article is cited by

Search

Quick links