Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thyroid hormone suppresses cell proliferation through endoglin-mediated promotion of p21 stability

Abstract

Hypothyroidism has been associated with significantly elevated risk for hepatocellular carcinoma (HCC), although the precise underlying mechanisms remain unknown at present. Thyroid hormone (T3) and its receptor (TR) are involved in metabolism and growth. Endoglin is a T3/TR candidate target gene identified from our previous studies. Here, we demonstrated that T3 positively regulates endoglin mRNA and protein levels, both in vitro and in vivo. The thyroid hormone response elements of endoglin were identified at positions −2114/−2004 and −2032/−1973 of the promoter region using the electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Endoglin was downregulated in the subgroups of HCC patients and significantly associated with histology grade (negative association, P=0.001), and this expression level was significantly associated with TRα1 in these HCC patients. Our results clearly indicate that p21 is involved in T3-mediated suppression of cell proliferation. Knock down of endoglin expression in HCC cells facilitated p21 polyubiquitination and promoted cell proliferation in the presence of T3. The data collectively suggest that T3/TR signaling suppresses cell proliferation by upregulating endoglin, in turn, affecting p21 stability. The results indicate that endoglin has a suppressor role to inhibit cell proliferation in HCC cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Huang YH, Tsai MM, Lin KH . Thyroid hormone dependent regulation of target genes and their physiological significance. Chang Gung Med J 2008; 31: 325–334.

    PubMed  Google Scholar 

  2. Yen PM . Physiological and molecular basis of thyroid hormone action. Physiol Rev 2001; 81: 1097–1142.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng SY . Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 2000; 1: 9–18.

    Article  CAS  PubMed  Google Scholar 

  4. Harvey CB, Williams GR . Mechanism of thyroid hormone action. Thyroid 2002; 12: 441–446.

    Article  CAS  PubMed  Google Scholar 

  5. Chamba A, Neuberger J, Strain A, Hopkins J, Sheppard MC, Franklyn JA . Expression and function of thyroid hormone receptor variants in normal and chronically diseased human liver. J Clin Endocrinol Metab 1996; 81: 360–367.

    CAS  PubMed  Google Scholar 

  6. Ando S, Sarlis NJ, Krishnan J, Feng X, Refetoff S, Zhang MQ et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 2001; 15: 1529–1538.

    Article  CAS  PubMed  Google Scholar 

  7. Lin KH, Wu YH, Chen SL . Impaired interaction of mutant thyroid hormone receptors associated with human hepatocellular carcinoma with transcriptional coregulators. Endocrinology 2001; 142: 653–662.

    Article  CAS  PubMed  Google Scholar 

  8. Puzianowska-Kuznicka M, Krystyniak A, Madej A, Cheng SY, Nauman J . Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab 2002; 87: 1120–1128.

    Article  CAS  PubMed  Google Scholar 

  9. Hassan MM, Kaseb A, Li D, Patt YZ, Vauthey JN, Thomas MB et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology 2009; 49: 1563–1570.

    Article  PubMed  Google Scholar 

  10. Barbara NP, Wrana JL, Letarte M . Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 1999; 274: 584–594.

    Article  CAS  PubMed  Google Scholar 

  11. Lastres P, Letamendia A, Zhang H, Rius C, Almendro N, Raab U et al. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 1996; 133: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  12. Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M . Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 2003; 22: 6557–6563.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Jovanovic B, Pins M, Lee C, Bergan RC . Over expression of endoglin in human prostate cancer suppresses cell detachment, migration and invasion. Oncogene 2002; 21: 8272–8281.

    Article  CAS  PubMed  Google Scholar 

  14. Henry LA, Johnson DA, Sarrio D, Lee S, Quinlan PR, Crook T et al. Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 2011; 30: 1046–1058.

    Article  CAS  PubMed  Google Scholar 

  15. Perez-Gomez E, Villa-Morales M, Santos J, Fernandez-Piqueras J, Gamallo C, Dotor J et al. A role for endoglin as a suppressor of malignancy during mouse skin carcinogenesis. Cancer Res 2007; 67: 10268–10277.

    Article  CAS  PubMed  Google Scholar 

  16. Laptenko O, Beckerman R, Freulich E, Prives C . p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc Natl Acad Sci USA 2011; 108: 10385–10390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I et al. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res 2005; 3: 627–634.

    Article  CAS  PubMed  Google Scholar 

  18. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M . Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 2003; 115: 71–82.

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Zeng SX, Lu H . UV Induces p21 rapid turnover independently of ubiquitin and Skp2. J Biol Chem 2006; 281: 26876–26883.

    Article  CAS  PubMed  Google Scholar 

  20. Cayrol C, Knibiehler M, Ducommun B . p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene 1998; 16: 311–320.

    Article  CAS  PubMed  Google Scholar 

  21. Kagawa S, Fujiwara T, Kadowaki Y, Fukazawa T, Sok-Joo R, Roth JA et al. Overexpression of the p21 sdi1 gene induces senescence-like state in human cancer cells: implication for senescence-directed molecular therapy for cancer. Cell Death Differ 1999; 6: 765–772.

    Article  CAS  PubMed  Google Scholar 

  22. Gougos A, Letarte M . Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 1990; 265: 8361–8364.

    CAS  PubMed  Google Scholar 

  23. Bellon T, Corbi A, Lastres P, Cales C, Cebrian M, Vera S et al. Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol 1993; 23: 2340–2345.

    Article  CAS  PubMed  Google Scholar 

  24. Chen RN, Huang YH, Yeh CT, Liao CH, Lin KH . Thyroid hormone receptors suppress pituitary tumor transforming gene 1 activity in hepatoma. Cancer Res 2008; 68: 1697–1706.

    Article  CAS  PubMed  Google Scholar 

  25. Gougos A, Letarte M . Biochemical characterization of the 44G4 antigen from the HOON pre-B leukemic cell line. J Immunol 1988; 141: 1934–1940.

    CAS  PubMed  Google Scholar 

  26. Lee JY, Yu SJ, Park YG, Kim J, Sohn J . Glycogen synthase kinase 3beta phosphorylates p21WAF1/CIP1 for proteasomal degradation after UV irradiation. Mol Cell Biol 2007; 27: 3187–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoo YD, Choi JY, Lee SJ, Kim JS, Min BR, Lee YI et al. TGF-beta-induced cell-cycle arrest through the p21(WAF1/CIP1)-G1 cyclin/Cdks-p130 pathway in gastric-carcinoma cells. Int J Cancer 1999; 83: 512–517.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  29. Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R . Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 2008; 27: 3567–3575.

    Article  CAS  PubMed  Google Scholar 

  30. Craft CS, Romero D, Vary CP, Bergan RC . Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 2007; 26: 7240–7250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu D, Zhuang L, Sun X, Chen J, Yao Y, Meng K et al. Particular distribution and expression pattern of endoglin (CD105) in the liver of patients with hepatocellular carcinoma. BMC Cancer 2007; 7: 122.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E et al. Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res 2008; 68: 8626–8634.

    Article  CAS  PubMed  Google Scholar 

  33. Yen CC, Huang YH, Liao CY, Liao CJ, Cheng WL, Chen WJ et al. Mediation of the inhibitory effect of thyroid hormone on proliferation of hepatoma cells by transforming growth factor-beta. J Mol Endocrinol 2006; 36: 9–21.

    Article  CAS  PubMed  Google Scholar 

  34. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M . Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 1990; 87: 1973–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kress E, Skah S, Sirakov M, Nadjar J, Gadot N, Scoazec JY et al. Cooperation between the thyroid hormone receptor TRalpha1 and the WNT pathway in the induction of intestinal tumorigenesis. Gastroenterology 2010; 138: 1863–1874.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki H, Willingham MC, Cheng SY . Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 2002; 12: 963–969.

    Article  CAS  PubMed  Google Scholar 

  37. Martinez-Iglesias O, Garcia-Silva S, Tenbaum SP, Regadera J, Larcher F, Paramio JM et al. Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res 2009; 69: 501–509.

    Article  CAS  PubMed  Google Scholar 

  38. Liao CH, Yeh CT, Huang YH, Wu SM, Chi HC, Tsai MM et al. Dickkopf 4 positively regulated by the thyroid hormone receptor suppresses cell invasion in human hepatoma cells. Hepatology 2012; 55: 910–920.

    Article  CAS  PubMed  Google Scholar 

  39. Wu SM, Huang YH, Yeh CT, Tsai MM, Liao CH, Cheng WL et al. Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells. Oncogene 2011; 30: 2057–2069.

    Article  CAS  PubMed  Google Scholar 

  40. Liao CJ, Wu TI, Huang YH, Chang TC, Wang CS, Tsai MM et al. Glucose-regulated protein 58 modulates cell invasiveness and serves as a prognostic marker for cervical cancer. Cancer Sci 2011; 102: 2255–2263.

    Article  CAS  PubMed  Google Scholar 

  41. Liao CH, Yeh SC, Huang YH, Chen RN, Tsai MM, Chen WJ et al. Positive regulation of spondin 2 by thyroid hormone is associated with cell migration and invasion. Endocr Relat Cancer 2010; 17: 99–111.

    Article  CAS  PubMed  Google Scholar 

  42. Lin KH, Shieh HY, Hsu HC . Negative regulation of the antimetastatic gene Nm23-H1 by thyroid hormone receptors. Endocrinology 2000; 141: 2540–2547.

    Article  CAS  PubMed  Google Scholar 

  43. Chen RN, Huang YH, Lin YC, Yeh CT, Liang Y, Chen SL et al. Thyroid hormone promotes cell invasion through activation of furin expression in human hepatoma cell lines. Endocrinology 2008; 149: 3817–3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Chang-Gung University, Taoyuan, Taiwan (CMRPD 34013, NMRP 140511) and from the National Science Council of the Republic of China (NSC 94-2320-B-182-052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-H Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Huang, YH., Wu, MH. et al. Thyroid hormone suppresses cell proliferation through endoglin-mediated promotion of p21 stability. Oncogene 32, 3904–3914 (2013). https://doi.org/10.1038/onc.2013.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.5

Keywords

This article is cited by

Search

Quick links