Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAX3-NCOA2 fusion gene has a dual role in promoting the proliferation and inhibiting the myogenic differentiation of rhabdomyosarcoma cells

Abstract

We analyzed a complex chromosomal translocation in a case of embryonal rhabdomyosarcoma (RMS) and showed that it generates the fusion gene PAX3 (paired box 3)-NCOA2 (nuclear receptor coactivator 2). To understand the role of this translocation in RMS tumorigenesis, we established two types of stable mouse myoblast C2C12 cell lines expressing PAX3-NCOA2 and PAX3-FOXO1A (forkhead box O1A), respectively. Compared with control cells, PAX3-NCOA2 cells grew faster, were more motile, were less anchorage dependent, progressed more quickly through the G1/S phase of cell cycle and showed greater transcriptional activation of the PAX3 consensus-binding site. However, PAX3-NCOA2 cells proliferated more slowly and differentiated more weakly than did PAX3-FOXO1A cells. Both PAX3-NCOA2 cells and PAX3-FOXO1A cells formed tumors in nude mice, although the PAX3-NCOA2-induced tumors grew more slowly. Our results may explain why NCOA2 rearrangement is mainly found in embryonal rhabdomyosarcoma, which has a better prognosis than alveolar rhabdomyosarcoma, which expresses the PAX3-FOXO1A fusion gene. These results indicate that the PAX3-NCOA2 fusion gene has a dual role in the tumorigenesis of RMS: promotion of the proliferation and inhibition of the myogenic differentiation of RMS cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ARMS:

alveolar rhabdomyosarcoma

BAC:

bacterial artificial chromosome

bHLH:

sequence similarity with basic helix–loop–helix motifs

CBP:

CREB-binding protein

cDNA:

complementary DNA

CID:

CBP interaction domain

CREB:

cAMP (cyclic adenosine monophosphate) response element-binding protein

DM:

differentiation medium

ERMS:

embryonal rhabdomyosarcoma

FISH:

fluorescence in situ hybridization

FKHR:

forkhead in human rhabdomyosarcoma

FOXO1A:

forkhead box O1A

G1:

Gap1

GFP:

green fluorescent protein

H&E:

hematoxylin and eosin

LXD:

LXXLL-containing helical motif

MHC:

myosin heavy chain

MSCV:

murine stem cell virus

NCOA2:

nuclear receptor coactivator 2

NID:

nuclear receptor-interacting domain

PAS:

sequence similarity with the Per Arndt-Sim (PAS) motifs

PAX3:

paired box 3

PBS:

phosphate-buffered saline

PBST:

phosphate-buffered saline with Tween 20

PI:

propidium iodide

RMS:

rhabdomyosarcoma

RT–PCR:

reverse transcription–polymerase chain reaction

SDS–PAGE:

sodium dodecylsulfate–polyacrylamidegel electrophoresis

TAD:

transactivation domain

References

  1. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993; 5: 230–235.

    Article  CAS  PubMed  Google Scholar 

  2. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. PAX3-FKHR and PAX7- FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol 2002; 20: 2672–2679.

    Article  CAS  PubMed  Google Scholar 

  3. Tremblay P, Gruss P . Pax: genes for mice and men. Pharmacol Ther 1994; 61: 205–226.

    Article  CAS  PubMed  Google Scholar 

  4. Robson EJ, He SJ, Eccles MR . A PANorama of PAX genes in cancer and development. Nat Rev Cancer 2006; 6: 52–62.

    Article  CAS  PubMed  Google Scholar 

  5. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P . Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 1991; 10: 1135–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jostes B, Walther C, Gruss P . The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 1990; 33: 27–37.

    Article  CAS  PubMed  Google Scholar 

  7. Barr FG . Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001; 20: 5736–5746.

    CAS  PubMed  Google Scholar 

  8. Anderson J, Ramsay A, Gould S, Pritchard-Jones K . PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 2001; 159: 1089–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lam PY, Sublett JE, Hollenbach AD, Roussel MF . The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA-binding domain. Mol Cell Biol 1999; 19: 594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bernasconi M, Remppis A, Fredericks WJ, Rauscher FJ 3rd, Schafer BW . Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 1996; 93: 13164–13169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013; 52: 538–550.

    Article  CAS  PubMed  Google Scholar 

  12. Sumegi J, Streblow R, Frayer RW, Dal Cin P, Rosenberg A, Meloni-Ehrig A et al. Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosomes Cancer 2010; 49: 224–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosoi H, Kakazu N, Konishi E, Tsuchihashi Y, Hada S, Amaya E et al. A novel PAX3 rearrangement in embryonal rhabdomyosarcoma. Cancer Genet Cytogenet 2009; 189: 98–104.

    Article  CAS  PubMed  Google Scholar 

  14. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR . GRIP-1 a novel mouse protein that serves as transcriptional coactivator in yeast for the hormone binding domains of steroid receprtors. Proc Natl Acad Sci USA 1996; 93: 4946–4952.

    Article  Google Scholar 

  15. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H . TIF2, a 160 kDa transcriptional mediator for the ligand dependent activation function AF-2 of nuclear receptors. EMBO J 1996; 15: 3667–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H . The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP bindingdependent and -independent pathways. EMBO J 1998; 17: 507–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen SL, Dowhan DH, Hosking BM, Muscat GE . The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000; 14: 1209–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ et al. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 1998; 12: 302–313.

    Article  CAS  PubMed  Google Scholar 

  19. Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkmann AO . Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2). Mol Endocrinol 1998; 12: 1172–1183.

    Article  CAS  PubMed  Google Scholar 

  20. Ma H, Hong H, Huang SM, Irvine RA, Webb P, Kushner PJ et al. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol Cell Biol 1999; 19: 6164–6173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT et al. Regulation of transcription by a protein methyltransferase. Science 1999; 284: 2174–2177.

    Article  CAS  PubMed  Google Scholar 

  22. Chen D, Huang SM, Stallcup MR . Synergistic, p160 coactivatordependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 2000; 275: 40810–40816.

    Article  CAS  PubMed  Google Scholar 

  23. Teyssier C, Chen D, Stallcup MR . Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 2002; 277: 46066–46072.

    Article  CAS  PubMed  Google Scholar 

  24. Lee YH, Coonrod SA, Kraus WL, Jelinek MA, Stallcup MR . Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA 2005; 102: 3611–3616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heery DM, Kalkhoven E, Hoare S, Parker MG . A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733–736.

    Article  CAS  PubMed  Google Scholar 

  26. McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev 1998; 21: 3357–3368.

    Article  Google Scholar 

  27. Nakae J, Cao Y, Daitoku H, Fukamizu A, Ogawa W, Yano Y et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 2006; 116: 2473–2483.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 2003; 3: 259–271.

    Article  CAS  PubMed  Google Scholar 

  29. Calhabeu F, Hayashi S, Morgan JE, Relaix F, Zammit PS . Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells. Oncogene 2013; 32: 651–662.

    Article  CAS  PubMed  Google Scholar 

  30. Jothi M, Nishijo K, Keller C, AKT Mal AK . and PAX3-FKHR cooperation enforces myogenic differentiation blockade in alveolar rhabdomyosarcoma cell. Cell Cycle 2012; 11: 895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kikuchi K, Tsuchiya K, Otabe O, Gotoh T, Tamura S, Katsumi Y et al. Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochem Biophys Res Commun 2008; 365: 568–574.

    Article  CAS  PubMed  Google Scholar 

  32. Finckenstein FG, Shahbazian V, Davicioni E, Ren YX, Anderson MJ . PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene 2008; 27: 2004–2014.

    Article  Google Scholar 

  33. Zhang Y, Schwartz J, Wang C . Comparative analysis of paired- and homeodomain-specific roles in PAX3-FKHR oncogenesis. J Clin Exp Pathol 2009; 2: 370–383.

    CAS  Google Scholar 

  34. Wang W, Kumar P, Wang W, Epstein J, Helman L, Moore JV et al. Insulin-like growth factor II and PAX3-FKHR cooperate in the oncogenesis of rhabdomyosarcoma. Cancer Res 1998; 58: 4426–4433.

    CAS  PubMed  Google Scholar 

  35. Naini S, Etheridge KT, Adam SJ, Qualman SJ, Bentley RC, Counter CM et al. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res 2008; 68: 9583–9588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parker D, Rivera M, Zor T, Henion-Caude A, Radhakrishnan I, Kumar A et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol Cell Biol 1999; 19: 5601–5607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Litterst CM, Pfitzner E . An LxxLL motif in thetransactivation domain of STAT6 mediates recruitment of NCoA-1/SRC-1. J Biol Chem 2002; 277: 36052–36060.

    Article  CAS  PubMed  Google Scholar 

  38. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387: 677–684.

    Article  CAS  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DD C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  40. Hamburger AW, Salmon SE, Kim MB, Trent JM, Soehnlen BJ, Alberts DS et al. Direct cloning of human ovarian carcinoma cells in agar. Cancer Res 1978; 38: 4118–4130.

    Google Scholar 

  41. Tsuchiya K, Hosoi H, Misawa-Furihata A, Houghton PJ, Sugimoto T . Insulin-like growth factor-I has different effects on myogenin induction and cell cycle progression in human alveolar and embryonal rhabdomyosarcoma cells. Int J Oncol 2007; 31: 41–47.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-aid for Scientific Research (A) 21249085, (A) 25253095, (B) 22390239, (C) 22591166, Grant-in-aid for Young Scientists (B) 24791078 and Grant-in-aid for Project for Development of Innovative Research on Cancer Therapeutics from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hosoi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Miyachi, M., Sakamoto, K. et al. PAX3-NCOA2 fusion gene has a dual role in promoting the proliferation and inhibiting the myogenic differentiation of rhabdomyosarcoma cells. Oncogene 33, 5601–5608 (2014). https://doi.org/10.1038/onc.2013.491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.491

Keywords

This article is cited by

Search

Quick links