Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus

Abstract

Oncolytic Newcastle disease virus (NDV) replicates selectively in most human tumor cells but not in normal cells. The relationship between tumorigenesis and the selective susceptibility of most tumor cells to oncolytic NDV replication is poorly understood. A multistage skin carcinogenesis model derived from non-tumorigenic HaCaT cells was used to systematically investigate the molecular mechanisms involved in the oncolytic NDV-sensitivity associated with tumorigenic transformation. No significant differences in interferon signaling were observed between the virus-sensitive tumor cells and the virus-resistant non-tumorigenic parental cells. Oncogenic H-Ras, which had been used for tumorigenic transformation, was shown to be necessary for virus replication but was not sufficient to render cells susceptible to NDV replication. By using an siRNA screening approach to search for virus-sensitizing genes in the tumorigenic cells, we could identify the small GTPase Rac1 as an oncogenic protein that is essential for NDV replication and anchorage-independent growth in tumorigenic cells. Furthermore, Rac1 expression was sufficient to render non-tumorigenic cells susceptible to NDV replication and to oncolytic cytotoxicity. This study establishes Rac1 as a link between tumorigenesis and oncolytic virus sensitivity in the HaCaT multistage skin carcinogenesis model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Balachandran S, Barber GN . (2004). Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5: 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann M, Romirer I, Sachet M, Fleischhacker R, Garcia-Sastre A, Palese P et al. (2001). A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 61: 8188–8193.

    CAS  PubMed  Google Scholar 

  • Bosco EE, Mulloy JC, Zheng Y . (2009). Rac1 GTPase: a ‘Rac’ of all trades. Cell Mol Life Sci 66: 370–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Boukamp P, Stanbridge EJ, Foo DY, Cerutti PA, Fusenig NE . (1990). c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res 50: 2840–2847.

    CAS  PubMed  Google Scholar 

  • Cassel WA, Garrett RE . (1965). Relationship between viral neurotropism and oncolysis. II. Study of influenza virus. Cancer 18: 863–868.

    Article  CAS  PubMed  Google Scholar 

  • Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR et al. (2005). Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24: 7821–7829.

    Article  CAS  PubMed  Google Scholar 

  • Darnell Jr JE., Kerr IM, Stark GR . (1994). Role of STAT2 in the alpha interferon signaling pathway. Science 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  • Espina C, Cespedes MV, Garcia-Cabezas MA, Gomez del Pulgar MT, Boluda A, Oroz LG et al. (2008). A critical role for Rac1 in tumor progression of human colorectal adenocarcinoma cells. Am J Pathol 172: 156–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farassati F, Yang AD, Lee PW . (2001). Oncogenes in Ras signalling pathway dictate host-cell permissiveness to herpes simplex virus 1. Nat Cell Biol 3: 745–750.

    Article  CAS  PubMed  Google Scholar 

  • Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V . (2006). Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defence. Int J Cancer 119: 328–338.

    Article  CAS  PubMed  Google Scholar 

  • Fusenig NE, Boukamp P . (1998). Multiple stages and genetic alterations in immortalization, malignant transformation, and tumor progression of human skin keratinocytes. Mol Carcinog 23: 144–158.

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. . (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros A, Martinez-Quintanilla J, Puig C, Guedan S, Mollevi DG, Alemany R et al. (2008). Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 68: 8928–8937.

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF. . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Morsdorf D . (2006). Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87: 3483–3494.

    Article  CAS  PubMed  Google Scholar 

  • Hotte SJ, Lorence RM, Hirte HW, Polawski SR, Bamat MK, O′Neil JD et al. (2007). An optimized clinical regimen for the oncolytic virus PV701. Clin Cancer Res 13: 977–985.

    Article  CAS  PubMed  Google Scholar 

  • Khosravi-Far R, Solski PA, Clark GJ, Kinch MS, Der CJ . (1995). Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol 15: 6443–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Bender Kim CF, Sweet-Cordero A et al. (2007). Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res 67: 8089–8094.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy S, Takimoto T, Scroggs RA, Portner A . (2006). Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J Virol 80: 5145–5155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwei KA, Finch JS, Ranger-Moore J, Bowden GT . (2006). The role of Rac1 in maintaining malignant phenotype of mouse skin tumor cells. Cancer Lett 231: 326–338.

    Article  CAS  PubMed  Google Scholar 

  • Lorence RM, Katubig BB, Reichard KW, Reyes HM, Phuangsab A, Sassetti MD et al. (1994). Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res 54: 6017–6021.

    CAS  PubMed  Google Scholar 

  • Lu X, Wu X, Plemenitas A, Yu H, Sawai ET, Abo A et al. (1996). CDC42 and Rac1 are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr Biol 6: 1677–1684.

    Article  CAS  PubMed  Google Scholar 

  • Mueller MM, Peter W, Mappes M, Huelsen A, Steinbauer H, Boukamp P et al. (2001). Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor. Am J Pathol 159: 1567–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundschau LJ, Faller DV . (1992). Oncogenic ras induces an inhibitor of double-stranded RNA-dependent eukaryotic initiation factor 2 alpha-kinase activation. J Biol Chem 267: 23092–23098.

    CAS  PubMed  Google Scholar 

  • Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW . (2004). Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 101: 11099–11104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noser JA, Mael AA, Sakuma R, Ohmine S, Marcato P, Wk Lee P et al. (2007). The RAS/Raf1/MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol Ther 15: 1531–1536.

    Article  CAS  PubMed  Google Scholar 

  • Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL et al. (2002). Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20: 2251–2266.

    Article  CAS  PubMed  Google Scholar 

  • Puhler F, Willuda J, Puhlmann J, Mumberg D, Romer-Oberdorfer A, Beier R . (2008). Generation of a recombinant oncolytic Newcastle disease virus and expression of a full IgG antibody from two transgenes. Gene Ther 15: 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Reichard KW, Lorence RM, Cascino CJ, Peeples ME, Walter RJ, Fernando MB et al. (1992). Newcastle disease virus selectively kills human tumor cells. J Surg Res 52: 448–453.

    Article  CAS  PubMed  Google Scholar 

  • Saeed MF, Kolokoltsov AA, Freiberg AN, Holbrook MR, Davey RA . (2008). Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog 4: e1000141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirrmacher V, Fournier P . (2009). Newcastle disease virus: a promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol Biol 542: 565–605.

    Article  CAS  PubMed  Google Scholar 

  • Schowalter RM, Wurth MA, Aguilar HC, Lee B, Moncman CL, McCann RO et al. (2006). Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell–cell fusion. Virology 350: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ . (2004). Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23: 9369–9380.

    Article  CAS  PubMed  Google Scholar 

  • Sinkovics JG, Horvath JC . (2000). Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Smith KD, Mezhir JJ, Bickenbach K, Veerapong J, Charron J, Posner MC et al. (2006). Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. J Virol 80: 1110–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD . (1998). How cells respond to interferons. Annu Rev Biochem 67: 227–264.

    Article  CAS  PubMed  Google Scholar 

  • Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. (2000). Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW . (1998). The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. Embo J 17: 3351–3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Yu J, Field J . (1999). Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol Cell Biol 19: 1881–1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheelock EF, Dingle JH . (1964). Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. N Engl J Med 271: 645–651.

    Article  CAS  PubMed  Google Scholar 

  • Wilden H, Fournier P, Zawatzky R, Schirrmacher V . (2009). Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Int J Oncol 34: 971–982.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Katja Köckritz, Steve Baethge, Anica Hoegner and Andreas Jung for their excellent technical assistance and Sanna-Maria Käkönen and David Light for carefully reading this paper. This work was in part supported by a grant from the Tumorzentrum Heidelberg–Mannheim to Petra Boukamp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Beier.

Ethics declarations

Competing interests

Jenny Puhlmann received a commercial research grant from Bayer Schering Pharma AG. Florian Puehler, Dominik Mumberg and Rudolf Beier are employees and shareholders of Bayer Schering Pharma AG.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puhlmann, J., Puehler, F., Mumberg, D. et al. Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene 29, 2205–2216 (2010). https://doi.org/10.1038/onc.2009.507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.507

Keywords

This article is cited by

Search

Quick links