Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of Hus1 sensitizes cells to etoposide-induced apoptosis by regulating BH3-only proteins

Abstract

The Rad9–Rad1–Hus1 (9-1-1) cell cycle checkpoint complex plays a key role in the DNA damage response. Cells with a defective 9-1-1 complex have been shown to be sensitive to apoptosis induced by certain types of genotoxic stress. However, the mechanism linking the loss of a functional 9-1-1 complex to the cell death machinery has yet to be determined. Here, we report that etoposide treatment dramatically upregulates the BH3-only proteins, Bim and Puma, in Hus1-deficient cells. Inhibition of either Bim or Puma expression in Hus1-knockout cells confers significant resistance to etoposide-induced apoptosis, whereas knockdown of both proteins results in further resistance, suggesting that Bim and Puma cooperate in sensitizing Hus1-deficient cells to etoposide treatment. Moreover, we found that Rad9 collaborates with Bim and Puma to sensitize Hus1-deficient cells to etoposide-induced apoptosis. In response to DNA damage, Rad9 localizes to chromatin in Hus1-wild-type cells, whereas in Hus1-deficient cells, it is predominantly located in the cytoplasm where it binds to Bcl-2. Taken together, these results suggest that loss of Hus1 sensitizes cells to etoposide-induced apoptosis not only by inducing Bim and Puma expressions but also by releasing Rad9 into the cytosol to augment mitochondrial apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abraham RT . (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.

    Article  CAS  Google Scholar 

  • Adams JM, Cory S . (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2004). Initiating cellular stress responses. Cell 118: 9–17.

    Article  CAS  Google Scholar 

  • Bao S, Lu T, Wang X, Zheng H, Wang LE, Wei Q et al. (2004). Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene 23: 5586–5593.

    Article  CAS  Google Scholar 

  • Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J et al. (2003). Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci USA 100: 1633–1638.

    Article  CAS  Google Scholar 

  • Brandt PD, Helt CE, Keng PC, Bambara RA . (2006). The Rad9 protein enhances survival and promotes DNA repair following exposure to ionizing radiation. Biochem Biophys Res Commun 347: 232–237.

    Article  CAS  Google Scholar 

  • Burtelow MA, Kaufmann SH, Karnitz LM . (2000). Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage. J Biol Chem 275: 26343–26348.

    Article  CAS  Google Scholar 

  • Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM . (2001). Reconstitution and molecular analysis of the hRad9–hHus1–hRad1 (9-1-1) DNA damage-responsive checkpoint complex. J Biol Chem 276: 25903–25909.

    Article  CAS  Google Scholar 

  • Chen MJ, Lin YT, Lieberman HB, Chen G, Lee EY . (2001). ATM-dependent phosphorylation of human Rad9 is required for ionizing radiation-induced checkpoint activation. J Biol Chem 276: 16580–16586.

    Article  CAS  Google Scholar 

  • Cory S, Huang DC, Adams JM . (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.

    Article  CAS  Google Scholar 

  • Dang T, Bao S, Wang XF . (2005). Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chromosomal stability. Genes Cells 10: 287–295.

    Article  CAS  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10: 1201–1204.

    Article  CAS  Google Scholar 

  • Galonek HL, Hardwick JM . (2006). Upgrading the BCL-2 network. Nat Cell Biol 8: 1317–1319.

    Article  CAS  Google Scholar 

  • Hershko T, Ginsberg D . (2004). Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279: 8627–8634.

    Article  CAS  Google Scholar 

  • Hirai I, Wang HG . (2002). A role of the C-terminal region of human Rad9 (hRad9) in nuclear transport of the hRad9 checkpoint complex. J Biol Chem 277: 25722–25727.

    Article  CAS  Google Scholar 

  • Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ et al. (2004). Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 24: 7235–7248.

    Article  CAS  Google Scholar 

  • Huang DC, Strasser A . (2000). BH3-only proteins-essential initiators of apoptotic cell death. Cell 103: 839–842.

    Article  CAS  Google Scholar 

  • Ishii H, Inageta T, Mimori K, Saito T, Sasaki H, Isobe M et al. (2005). Frag1, a homolog of alternative replication factor C subunits, links replication stress surveillance with apoptosis. Proc Natl Acad Sci USA 102: 9655–9660.

    Article  CAS  Google Scholar 

  • Kinzel B, Hall J, Natt F, Weiler J, Cohen D . (2002). Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer 94: 1808–1814.

    Article  CAS  Google Scholar 

  • Komatsu K, Hopkins KM, Lieberman HB, Wang H-G . (2000a). Schizosaccharomyces pombe rad9 contains a BH3-like region and interacts with the anti-apoptotic protein bcl-2. FEBS Lett 481: 122–126.

    Article  CAS  Google Scholar 

  • Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S et al. (2000b). Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis. Nat Cell Biol 2: 1–6.

    Article  CAS  Google Scholar 

  • Lee MW, Hirai I, Wang H-G . (2003). Caspase-3-mediated cleavage of Rad9 during apoptosis. Oncogene 22: 6340–6346.

    Article  CAS  Google Scholar 

  • Lieberman HB . (2006). Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 97: 690–697.

    Article  CAS  Google Scholar 

  • Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A . (2001). Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci USA 98: 11236–11241.

    Article  CAS  Google Scholar 

  • Loegering D, Arlander SJ, Hackbarth J, Vroman BT, Roos-Mattjus P, Hopkins KM et al. (2004). Rad9 protects cells from topoisomerase poison-induced cell death. J Biol Chem 279: 18641–18647.

    Article  CAS  Google Scholar 

  • Melo J, Toczyski D . (2002). A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14: 237–245.

    Article  CAS  Google Scholar 

  • Mendez J, Stillman B . (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602–8612.

    Article  CAS  Google Scholar 

  • Montecucco A, Biamonti G . (2007). Cellular response to etoposide treatment. Cancer Lett 252: 9–18.

    Article  CAS  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  Google Scholar 

  • Niida H, Nakanishi M . (2006). DNA damage checkpoints in mammals. Mutagenesis 21: 3–9.

    Article  CAS  Google Scholar 

  • Oltvai ZN, Korsmeyer SJ . (1994). Checkpoints of dueling dimers foil death wishes. Cell 79: 189–192.

    Article  CAS  Google Scholar 

  • Parrilla-Castellar ER, Arlander SJ, Karnitz L . (2004). Dial 9-1-1 for DNA damage: the Rad9–Hus1–Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3: 1009–1014.

    Article  CAS  Google Scholar 

  • Puthalakath H, Strasser A . (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9: 505–512.

    Article  CAS  Google Scholar 

  • Rauen M, Burtelow MA, Dufault VM, Karnitz LM . (2000). The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9. J Biol Chem 275: 29767–29771.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Strasser A . (2005). The role of BH3-only proteins in the immune system. Nat Rev Immunol 5: 189–200.

    Article  CAS  Google Scholar 

  • Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 278: 49795–49805.

    Article  CAS  Google Scholar 

  • Volkmer E, Karnitz LM . (1999). Human homologs of Schizosaccharomyces pombe rad1, hus1, and rad9 form a DNA damage-responsive protein complex. J Biol Chem 274: 567–570.

    Article  CAS  Google Scholar 

  • Wang H-G, Rapp UR, Reed JC . (1996). Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638.

    Article  CAS  Google Scholar 

  • Wang X, Zou L, Zheng H, Wei Q, Elledge SJ, Li L . (2003). Genomic instability and endoreduplication triggered by RAD17 deletion. Genes Dev 17: 965–970.

    Article  CAS  Google Scholar 

  • Weiss RS, Enoch T, Leder P . (2000). Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 14: 1886–1898.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss RS, Leder P, Vaziri C . (2003). Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 23: 791–803.

    Article  CAS  Google Scholar 

  • Weiss RS, Matsuoka S, Elledge SJ, Leder P . (2002). Hus1 acts upstream of chk1 in a mammalian DNA damage response pathway. Curr Biol 12: 73–77.

    Article  CAS  Google Scholar 

  • Willis SN, Adams JM . (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625.

    Article  CAS  Google Scholar 

  • Wong HK, Fricker M, Wyttenbach A, Villunger A, Michalak EM, Strasser A et al. (2005). Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 25: 8732–8747.

    Article  CAS  Google Scholar 

  • Yang JY, Xia W, Hu MC . (2006). Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int J Oncol 29: 643–648.

    PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Komatsu K, Wang HG, Kufe D . (2002). c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol 22: 3292–3300.

    Article  CAS  Google Scholar 

  • Yoshida K, Wang HG, Miki Y, Kufe D . (2003). Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 22: 1431–1441.

    Article  CAS  Google Scholar 

  • Zhou BB, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    Article  CAS  Google Scholar 

  • Zou L, Cortez D, Elledge SJ . (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16: 198–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Analytical Microscopy Core facility at the H Lee Moffitt Cancer Center and Research Institute for their technical assistance. This work was supported by grants from the National Institutes of Health (CA90315 to H-GW and CA108773 to RSW) and the Department of Defense Breast Cancer Research Program (BC050563 to CLM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-G Wang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyerkord, C., Takahashi, Y., Araya, R. et al. Loss of Hus1 sensitizes cells to etoposide-induced apoptosis by regulating BH3-only proteins. Oncogene 27, 7248–7259 (2008). https://doi.org/10.1038/onc.2008.336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.336

Keywords

This article is cited by

Search

Quick links