Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA damage-induced translocation of mitochondrial factor HIGD1A into the nucleus regulates homologous recombination and radio/chemo-sensitivity

Abstract

HIGD1A is an important mitochondrial protein recently shown to have a novel nuclear localization under severe stress. However, whether this protein is also associated with the DNA damage response has rarely been studied. Here, we reported that DSBs-induced the translocation of mitochondrial HIGD1A to the nucleus is dependent on nuclear pore complex (NPCs), which finally promotes HR and radio/chemo-resistance. Importantly, NUP93 and HIGD1A physically interact and the interaction domain with NUP93 is located at residues 46–60 of HIGD1A. Chromatin-enriched HIGD1A can then directly interact with RPA. During the early stages of HR, HIGD1A promotes the loading of RPA to DSBs and activates the DNA damage-dependent chromatin association of RAD9-RAD1-HUS1 complex (9-1-1), which stimulates the ATR-Chk1-dependent G2/M DNA damage checkpoint. After facilitating RPA-ssDNA binding, HIGD1A in turn inhibits abnormal persistence of RPA1 foci by promoting ubiquitination of RPA1 and inducing its eventual proteasomal degradation. In addition, we have identified clinical drug Preveon associated with the HIGD1A-NUP93 interaction domain using a virtual screening approach. This compound directly interacted with HIGD1A, which was verified by NMR, and then inhibited HIGD1A translocation. Collectively, we demonstrate a novel role for HIGD1A in DSBs and provide rationale for using HIGD1A inhibitors as cancer therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HIGD1A is required for DNA damage repair.
Fig. 2: NUP93 physically interacts with HIGD1A and allows HIGD1A localization to the nucleus in response to DSBs.
Fig. 3: HIGD1A regulates homologous repair of DSBs.
Fig. 4: HIGD1A promotes the loading of RPA1 to DSBs.
Fig. 5: HIGD1A facilitates the removal of RPA1 timely from DSBs.
Fig. 6: HIGD1A depletion blocks the interaction of the RAD9-RAD1-HUS1 complex with RPA1 and inhibits the subsequent ATR-Chk1 axis.
Fig. 7: HIGD1A mediates chemosensitivity in cancer cells.
Fig. 8: Targeting HIGD1A enhances the efficacy of radiotherapy and chemotherapy in vivo.
Fig. 9: Virtual screening of drugs that block HIGD1A localization to the nucleus.
Fig. 10: Schematic illustration of the mechanism of HIGD1A regulating HR.

Similar content being viewed by others

References

  1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  Google Scholar 

  2. O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article  Google Scholar 

  3. Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect. 2014;122:1271–8.

    Article  CAS  Google Scholar 

  4. Xu LM, Wu TT, Lu SH, Hao XH, Qin JC, Wang J et al. Mitochondrial superoxide contributes to oxidative stress exacerbated by DNA damage response in RAD51-depleted ovarian cancer cells. Redox Biol. 2020;36:101604.

  5. Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YMW. Redox-sensitive kinases of the nuclear factor-B-K signaling pathway. Antioxid Redox Signal. 2006;8:1791–806.

    Article  CAS  Google Scholar 

  6. Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012;5:4.

  7. Tang JB, Goellner EM, Wang XH, Trivedi RN, St Croix CM, Jelezcova E, et al. Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res. 2010;8:67–79.

    Article  CAS  Google Scholar 

  8. Ying W. Roles of NAD (+), PARP-1, and Sirtuins in cell death, ischemic brain injury, and synchrotron radiation X-Ray-induced tissue injury. Science. 2013;2013:691251.

    Google Scholar 

  9. Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci. 2012;125:5745–57.

    Article  CAS  Google Scholar 

  10. Kosova AA, Khodyreva SN, Lavrik OI. Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in DNA repair. Biochem-Mosc. 2017;82:643–54.

    Article  CAS  Google Scholar 

  11. Ci SS, Xia W, Liang WC, Qin LH, Zhang YL, Dianov GL, et al. Src-mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage. Faseb J. 2020;34:10443–61.

    Article  CAS  Google Scholar 

  12. An HJ, Cho G, Lee JO, Paik SG, Kim YS, Lee H. Higd-1a interacts with Opa1 and is required for the morphological and functional integrity of mitochondria. P Natl Acad Sci USA. 2013;110:13014–9.

    Article  CAS  Google Scholar 

  13. Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, et al. HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep. 2015;10:891–9.

    Article  CAS  Google Scholar 

  14. Hayashi H, Nakagami H, Takeichi M, Shimamura M, Koibuchi N, Oiki E, et al. HIG1, a novel regulator of mitochondrial gamma-secretase, maintains normal mitochondrial function. Faseb J. 2012;26:2306–17.

    Article  CAS  Google Scholar 

  15. Li T, Xian WJ, Gao Y, Jiang S, Yu QH, Zheng QC, et al. Higd1a protects cells from lipotoxicity under high-fat exposure. Oxidative Med Cell Longev. 2019;2019:6051262.

  16. Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, et al. Higd1a is a positive regulator of cytochrome c oxidase. P Natl Acad Sci USA. 2015;112:1553–8.

    Article  CAS  Google Scholar 

  17. Ameri K, Rajah AM, Nguyen V, Sanders TA, Jahangiri A, DeLay M, et al. Nuclear localization of the mitochondrial factor higd1a during metabolic stress. Plos One 2013;8:e62758.

  18. Mohr D, Frey S, Fischer T, Guttler T, Gorlich D. Characterisation of the passive permeability barrier of nuclear pore complexes. Embo J. 2009;28:2541–53.

    Article  CAS  Google Scholar 

  19. Wassing IE, Esashi F. RAD51: Beyond the break. Semin Cell Dev Biol. 2021;113:38–46.

    Article  CAS  Google Scholar 

  20. Parrilla-Castellar ER, Arlander SJ, Karnitz L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst). 2004;3:1009–14.

    Article  CAS  Google Scholar 

  21. Damasceno JD, Obonaga R, Santos EV, Scott A, McCulloch R, Tosi LRO. Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9-1-1 complex components during the DNA damage response in Leishmania. Mol Microbiol. 2016;101:1054–68.

    Article  CAS  Google Scholar 

  22. Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008;7:2955–66.

    Article  CAS  Google Scholar 

  23. Basu A, Krishnamurthy S Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids. 2010;2010.

  24. Wozniak AJ, Glisson BS, Hande KR, Ross WE. Inhibition of etoposide-induced DNA damage and cytotoxicity in L1210 cells by dehydrogenase inhibitors and other agents. Cancer Res. 1984;44:626–32.

    CAS  PubMed  Google Scholar 

  25. Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJC, et al. Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods. 2012;9:834–+.

    Article  CAS  Google Scholar 

  26. Liu C, He G, Jiang QL, Han B, Peng C. Novel hybrid virtual screening protocol based on molecular docking and structure-based pharmacophore for discovery of Methionyl-tRNA synthetase inhibitors as antibacterial agents. Int J Mol Sci. 2013;14:14225–39.

    Article  Google Scholar 

  27. Chou TC. Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  Google Scholar 

  28. Nagao T, Shintani Y, Hayashi T, Kioka H, Kato H, Nishida Y, et al. Higd1a improves respiratory function in the models of mitochondrial disorder. Faseb J. 2020;34:1859–71.

    Article  CAS  Google Scholar 

  29. Cheng ZH, Wang GY, Zhu WY, Luo C, Guo ZL. LEF1-AS1 accelerates tumorigenesis in glioma by sponging miR-489-3p to enhance HIGD1A. Cell Death Dis. 2020;11:690.

  30. Timon-Gomez A, Garlich J, Stuart RA, Ugalde C, Barrientos A. Distinct Roles of Mitochondrial HIGD1A and HIGD2A in Respiratory Complex and Supercomplex Biogenesis. Cell Rep. 2020;31:107607.

  31. Chuderland D, Konson A, Seger R. Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell. 2008;31:850–61.

    Article  CAS  Google Scholar 

  32. Hsu DW, Kiely R, Couto CAM, Wang HY, Hudson JJR, Borer C, et al. DNA double-strand break repair pathway choice in Dictyostelium. J Cell Sci. 2011;124:1655–63.

    Article  CAS  Google Scholar 

  33. Brandsma I, Gent DC. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 2012;3:9.

    Article  CAS  Google Scholar 

  34. Dudas A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res-Rev Mutat. 2004;566:131–67.

    Article  CAS  Google Scholar 

  35. Pokhrel N, Origanti S, Davenport EP, Gandhi D, Kaniecki K, Mehl RA, et al. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids. Nucleic Acids Res. 2017;45:9413–26.

    Article  CAS  Google Scholar 

  36. Zou Y, Liu YY, Wu XM, Shell SM. Functions of human replication protein A (RPA): From DNA replication to DNA damage and stress responses. J Cell Physiol. 2006;208:267–73.

    Article  CAS  Google Scholar 

  37. Nuss JE, Patrick SM, Oakley GG, Alter GM, Robison JG, Dixon K, et al. DNA damage induced hyperphosphorylation of replication protein A. 1. Identification of novel sites of phosphorylation in response to DNA damage. Biochemistry. 2005;44:8428–37.

    Article  CAS  Google Scholar 

  38. Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. Nucleic Acids Res. 2017;45:749–61.

    Article  CAS  Google Scholar 

  39. Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer. 2020;2:zcaa022.

    Article  Google Scholar 

  40. Yang Q, Zhu Q, Lu X, Du Y, Cao L, Shen C, et al. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci USA. 2017;114:E6054–E6063.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H, Nakajima K, et al. RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol Cell. 2017;66:622–34. e628

    Article  CAS  Google Scholar 

  42. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.

    Article  CAS  Google Scholar 

  43. Raynard S, Niu HY, Sung P. DNA double-strand break processing: the beginning of the end. Gene Dev. 2008;22:2903–7.

    Article  CAS  Google Scholar 

  44. Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Bio. 2017;18:783–783.

    Article  CAS  Google Scholar 

  45. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7:195–U121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Excellent Young Scholars (12122510), the National Natural Science Foundation of China (32171240, 11835014, and 31870845), the HFIPS Director’s Fund (Grant No. YZJJZX202014) and the CAS Pioneer Hundred Talents Program (GZ).

Author information

Authors and Affiliations

Authors

Contributions

GZ and BC conceived of the study; BC, FX, YG, GH, KZ, and HL conducted experiments; SC, AX and LW analyzed and interpreted the data; GZ and BC wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guoping Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xu, F., Gao, Y. et al. DNA damage-induced translocation of mitochondrial factor HIGD1A into the nucleus regulates homologous recombination and radio/chemo-sensitivity. Oncogene 41, 1918–1930 (2022). https://doi.org/10.1038/s41388-022-02226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02226-9

This article is cited by

Search

Quick links