Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases

Abstract

When elongation factor G (EF-G) binds to the ribosome, it first makes contact with the C-terminal domain (CTD) of L12 before interacting with the N-terminal domain (NTD) of L11. Here we have identified a universally conserved residue, Pro22 of L11, that functions as a proline switch (PS22), as well as the corresponding center of peptidyl-prolyl cis-trans isomerase (PPIase) activity on EF-G that drives the cis-trans isomerization of PS22. Only the cis configuration of PS22 allows direct contact between the L11 NTD and the L12 CTD. Mutational analyses of both PS22 and the residues of the EF-G PPIase center reveal their function in translational GTPase (trGTPase) activity, protein synthesis and cell survival in Escherichia coli. Finally, we demonstrate that all known universal trGTPases contain an active PPIase center. Our observations suggest that the cis-trans isomerization of the L11 PS22 is a universal event required for an efficient turnover of trGTPases throughout the translation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conserved PS22 is necessary for protein synthesis.
Figure 2: PS22 isomerization for the L11-L12 connection.
Figure 3: Identification of PS22 as the interaction site of the L11 NTD with EF-G.
Figure 4: EF-G has in vitro PPIase activity with the catalytic center facing PS22.
Figure 5: Physiological effects of PPIase activity on EF-G and total polypeptide synthesis.
Figure 6: PPIase activity is common among trGTPases with a conserved catalytic center.
Figure 7: Switch-and-latch model.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004 (2005).

    Article  CAS  Google Scholar 

  2. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  3. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  Google Scholar 

  4. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

  5. Mulder, F.A. et al. Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. Biochemistry 43, 5930–5936 (2004).

    Article  CAS  Google Scholar 

  6. Helgstrand, M. et al. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J. Mol. Biol. 365, 468–479 (2007).

    Article  CAS  Google Scholar 

  7. Datta, P.P., Sharma, M.R., Qi, L., Frank, J. & Agrawal, R.K. Interaction of the G′ domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EM. Mol. Cell 20, 723–731 (2005).

    Article  CAS  Google Scholar 

  8. Nechifor, R., Murataliev, M. & Wilson, K.S. Functional interactions between the G' subdomain of bacterial translation factor EF-G and ribosomal protein L7/L12. J. Biol. Chem. 282, 36998–37005 (2007).

    Article  CAS  Google Scholar 

  9. Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W. & Rodnina, M.V. Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J. 24, 4316–4323 (2005).

    Article  CAS  Google Scholar 

  10. Donner, D., Villems, R., Liljas, A. & Kurland, C.G. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12. Proc. Natl. Acad. Sci. USA 75, 3192–3195 (1978).

    Article  CAS  Google Scholar 

  11. Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

    Article  CAS  Google Scholar 

  12. Cundliffe, E. & Thompson, J. Concerning the mode of action of micrococcin upon bacterial protein synthesis. Eur. J. Biochem. 118, 47–52 (1981).

    Article  CAS  Google Scholar 

  13. Pestka, S. Thiostrepton: a ribosomal inhibitor of translocation. Biochem. Biophys. Res. Commun. 40, 667–674 (1970).

    Article  CAS  Google Scholar 

  14. Jonker, H.R., Ilin, S., Grimm, S.K., Wohnert, J. & Schwalbe, H. L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Nucleic Acids Res. 35, 441–454 (2007).

    Article  CAS  Google Scholar 

  15. Rodnina, M.V. et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc. Natl. Acad. Sci. USA 96, 9586–9590 (1999).

    Article  CAS  Google Scholar 

  16. Harms, J.M. et al. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 30, 26–38 (2008).

    Article  CAS  Google Scholar 

  17. Kavran, J.M. & Steitz, T.A. Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements. J. Mol. Biol. 371, 1047–1059 (2007).

    Article  CAS  Google Scholar 

  18. Li, W., Sengupta, J., Rath, B.K. & Frank, J. Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations. RNA 12, 1240–1253 (2006).

    Article  CAS  Google Scholar 

  19. Ratje, A.H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  Google Scholar 

  20. Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: The structure of the L11-RNA complex. Cell 97, 491–502 (1999).

    Article  CAS  Google Scholar 

  21. Jenner, L.B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

    Article  CAS  Google Scholar 

  22. Dunkle, J.A., Xiong, L., Mankin, A.S. & Cate, J.H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 107, 17152–17157 (2010).

    Article  CAS  Google Scholar 

  23. Jin, H., Kelley, A.C., Loakes, D. & Ramakrishnan, V. Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc. Natl. Acad. Sci. USA 107, 8593–8598 (2010).

    Article  CAS  Google Scholar 

  24. Allen, G.S., Zavialov, A., Gursky, R., Ehrenberg, M. & Frank, J. The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121, 703–712 (2005).

    Article  CAS  Google Scholar 

  25. Schuette, J.C. et al. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009).

    Article  CAS  Google Scholar 

  26. Connell, S.R. et al. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat. Struct. Mol. Biol. 15, 910–915 (2008).

    Article  CAS  Google Scholar 

  27. Gao, H. et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929–941 (2007).

    Article  CAS  Google Scholar 

  28. Grathwohl, C. & Wuthrich, K. The X-Pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers 15, 2025–2041 (1976).

    Article  CAS  Google Scholar 

  29. Fanghänel, J. & Fischer, G. Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front. Biosci. 9, 3453–3478 (2004).

    Article  Google Scholar 

  30. Markus, M.A., Triantafillidou, D., Choli-Papadopoulou, T. & Torchia, D.A. 1H, 15N, and 13C assignments and secondary structure identification for full-length ribosomal protein L11 from Thermus thermophilus. J. Biomol. NMR 20, 293–294 (2001).

    Article  CAS  Google Scholar 

  31. Enoki, S., Saeki, K., Maki, K. & Kuwajima, K. Acid denaturation and refolding of green fluorescent protein. Biochemistry 43, 14238–14248 (2004).

    Article  CAS  Google Scholar 

  32. Xie, J.B. & Zhou, J.M. Trigger factor assisted folding of green fluorescent protein. Biochemistry 47, 348–357 (2008).

    Article  CAS  Google Scholar 

  33. Liu, C.P. & Zhou, J.M. Trigger factor-assisted folding of bovine carbonic anhydrase II. Biochem. Biophys. Res. Commun. 313, 509–515 (2004).

    Article  CAS  Google Scholar 

  34. Fischer, G., Bang, H., Ludwig, B., Mann, K. & Hacker, J. Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPlase) activity. Mol. Microbiol. 6, 1375–1383 (1992).

    Article  CAS  Google Scholar 

  35. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

    Article  CAS  Google Scholar 

  36. Agrawal, R.K., Penczek, P., Grassucci, R. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: The mechanism of translocation. Proc. Natl. Acad. Sci. USA 95, 6134–6138 (1998).

    Article  CAS  Google Scholar 

  37. Wriggers, W., Agrawal, R.K., Drew, D.L., McCammon, A. & Frank, J. Domain motions of EF-G bound to the 70S ribosome: Insights from a hand-shaking between multi-resolution structures. Biophys. J. 79, 1670–1678 (2000).

    Article  CAS  Google Scholar 

  38. Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D.J. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104, 19671–19678 (2007).

    Article  CAS  Google Scholar 

  39. Li, W., Trabuco, L.G., Schulten, K. & Frank, J. Molecular dynamics of EF-G during translocation. Proteins 79, 1478–1486 (2011).

    Article  CAS  Google Scholar 

  40. Spirin, A.S. The ribosome as a conveying thermal ratchet machine. J. Biol. Chem. 284, 21103–21119 (2009).

    Article  CAS  Google Scholar 

  41. Agirrezabala, X. et al. Structural insights into cognate versus near-cognate discrimination during decoding. EMBO J. 30, 1497–1507 (2011).

    Article  CAS  Google Scholar 

  42. Voorhees, R.M., Schmeing, T.M., Kelley, A.C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).

    Article  CAS  Google Scholar 

  43. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  Google Scholar 

  44. Evans, R.N., Blaha, G., Bailey, S. & Steitz, T.A. The structure of LepA, the ribosomal back translocase. Proc. Natl. Acad. Sci. USA 105, 4673–4678 (2008).

    Article  CAS  Google Scholar 

  45. Agrawal, R.K., Linde, J., Sengupta, J., Nierhaus, K.H. & Frank, J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J. Mol. Biol. 311, 777–787 (2001).

    Article  CAS  Google Scholar 

  46. Pawlik, R., Littlechild, J., Pon, C. & Gualerzi, C. Purification and properties of Escherichia coli translational initiation factors. Biochem. Int. 2, 421–428 (1981).

    CAS  Google Scholar 

  47. Dinos, G. et al. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol. Cell 13, 113–124 (2004).

    Article  CAS  Google Scholar 

  48. Wilson, D.N., Guevremont, D. & Tate, W.P. The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246. RNA 6, 1704–1713 (2000).

    Article  CAS  Google Scholar 

  49. Stoller, G. et al. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J. 14, 4939–4948 (1995).

    Article  CAS  Google Scholar 

  50. Kern, G., Kern, D., Schmid, F.X. & Fischer, G. Reassessment of the putative chaperone function of prolyl-cis/trans-isomerases. FEBS Lett. 348, 145–148 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to J. Frank and Y. Hashem for their critical discussions and great efforts in polishing the manuscript. We thank J. Wang, J. Zhou, J. Lin, Y. Tao and J. Lou for their technical support and help. We thank Y. Feng for NMR analysis, G. Liu and J. Xue for preparing some of the proteins and W. Zhang for creating the movie. This work was supported by grants from the Major State Basic Research Development Program of China (2012CB911001 and 2010CB834201), the National Natural Science Foundation of China (31170756) and the Novo Nordisk-Chinese Academy of Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q., K.H.N., W.G. and R.-M.X. designed the experiments. L.W., F.Y. and D.Z. conducted the experiments. Z.C. developed the molecular dynamics simulation. Y.Q. and L.W. analyzed the data. Y.Q., L.W. and K.H.N. wrote the manuscript.

Corresponding author

Correspondence to Yan Qin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–6 and Supplementary Methods (PDF 657 kb)

Supplementary Movie

The Switch-and-Latch model. The movie demonstrates the conformational change of L11–L12-CTD complex between the open and the closed states. Open state (L11 in magenta, L12 in yellow, the proline switch trans-PS22 in green and loop 62 in cyan) is represented by the L11 on the ribosome•RF2 complex (PDB 2X9S, chain K) and L12-CTD in its isolated form (PDB 1CTF). Closed state (L11 in red, L12 in yellow, cis-PS22 in green and loop 62 in cyan) is presented by the L11 on the ribosome•EF-G•GDP•fusidic acid complex (PDB 2WRL, chain K) and L12 from the same complex (PDB 2WRL, chain L). The model was built based on MD simulation of L11-NTD. The animation is generated by the Morph Server and PyMol. (WMV 1970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Yang, F., Zhang, D. et al. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 19, 403–410 (2012). https://doi.org/10.1038/nsmb.2254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing