Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synovial tissue research: a state-of-the-art review

A Corrigendum to this article was published on 19 December 2017

An Erratum to this article was published on 22 September 2017

This article has been updated

Key Points

  • Synovial tissue is the target tissue for autoimmune arthritides such as rheumatoid arthritis.

  • Synovial biopsy is a safe and well-tolerated procedure that is becoming more widely available.

  • There is a significant body of work from the past 30 years analysing the cellular and molecular changes in synovial tissue from patients with rheumatoid arthritis to identify specific biomarkers.

  • Technological advances in molecular and cellular analysis now provide new opportunities for defining new biomarkers and targets.

Abstract

The synovium is the major target tissue of inflammatory arthritides such as rheumatoid arthritis. The study of synovial tissue has advanced considerably throughout the past few decades from arthroplasty and blind needle biopsy to the use of arthroscopic and ultrasonographic technologies that enable easier visualization and improve the reliability of synovial biopsies. Rapid progress has been made in using synovial tissue to study disease pathogenesis, to stratify patients, to discover biomarkers and novel targets, and to validate therapies, and this progress has been facilitated by increasingly diverse and sophisticated analytical and technological approaches. In this Review, we describe these approaches, and summarize how their use in synovial tissue research has improved our understanding of rheumatoid arthritis and identified candidate biomarkers that could be used in disease diagnosis and stratification, as well as in predicting disease course and treatment response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The macroscopic and microscopic appearance of rheumatoid synovial tissue.
Figure 2: Synovial tissue retrieval methods.
Figure 3: Synovial tissue immunostaining.
Figure 4: Ex vivo synovial tissue culture viability.

Similar content being viewed by others

Change history

  • 19 December 2017

    In the version of this article originally published, the author Sander W. Tas was erroneously omitted from the author list. This error has now been corrected in the online version of the article.

  • 22 September 2017

    In the original version of this article the name of one of the authors, Elsa Vieira-Sousa, was incorrectly given as Elsa Sousa. This error has now been corrected in the PDF and HTML versions of the article.

References

  1. Tak, P. P. & Bresnihan, B. The pathogenesis and prevention of joint damage in rheumatoid arthritis: advances from synovial biopsy and tissue analysis. Arthritis Rheum. 43, 2619–2633 (2000).

    CAS  PubMed  Google Scholar 

  2. Mitchell, D. M. et al. Survival, prognosis, and causes of death in rheumatoid arthritis. Arthritis Rheum. 29, 706–714 (1986).

    CAS  PubMed  Google Scholar 

  3. Pincus, T. et al. Severe functional declines, work disability, and increased mortality in seventy-five rheumatoid arthritis patients studied over nine years. Arthritis Rheum. 27, 864–872 (1984).

    CAS  PubMed  Google Scholar 

  4. Wolfe, F., Michaud, K., Gefeller, O. & Choi, H. K. Predicting mortality in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1530–1542 (2003).

    PubMed  Google Scholar 

  5. Sokka, T. et al. Remission and rheumatoid arthritis: data on patients receiving usual care in twenty-four countries. Arthritis Rheum. 58, 2642–2651 (2008).

    PubMed  Google Scholar 

  6. Balogh, E. et al. Comparison of remission criteria in a tumour necrosis factor inhibitor treated rheumatoid arthritis longitudinal cohort: patient global health is a confounder. Arthritis Res. Ther. 15, R221 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Fearon, U. & Veale, D. J. Key challenges in rheumatic and musculoskeletal disease translational research. EBioMedicine 1, 95–96 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Hensvold, A. H. et al. How well do ACPA discriminate and predict RA in the general population: a study based on 12 590 population-representative Swedish twins. Ann. Rheum. Dis. 76, 119–125 (2017).

    PubMed  Google Scholar 

  9. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    PubMed  Google Scholar 

  10. Choi, I. Y. et al. MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Ann. Rheum. Dis. 74, 499–505 (2015).

    CAS  PubMed  Google Scholar 

  11. Hueber, W. et al. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis. Arthritis Res. Ther. 11, R76 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Smith, M. D. et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann. Rheum. Dis. 62, 303–307 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rhee, D. K. et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J. Clin. Invest. 115, 622–631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hyc, A., Osiecka-Iwan, A., Niderla-Bielinska, J., Jankowska-Steifer, E. & Moskalewski, S. Pro-and anti-inflammatory cytokines increase hyaluronan production by rat synovial membrane in vitro. Int. J. Mol. Med. 24, 579–585 (2009).

    CAS  PubMed  Google Scholar 

  15. Blewis, M. E. et al. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng. Part A 16, 1329–1337 (2009).

    PubMed Central  Google Scholar 

  16. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS  PubMed  Google Scholar 

  17. Tchetverikov, I. et al. MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann. Rheum. Dis. 64, 694–698 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Billinghurst, R. C. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shingleton, W. D., Hodges, D. J., Brick, P. & Cawston, T. E. Collagenase: a key enzyme in collagen turnover. Biochem. Cell Biol. 74, 759–775 (1996).

    CAS  PubMed  Google Scholar 

  20. Connolly, M. et al. Acute-phase serum amyloid A regulates tumor necrosis factor α and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologic therapy. Arthritis Rheum. 64, 1035–1045 (2011).

    PubMed  Google Scholar 

  21. Lohmander, L. S., Atley, L. M., Pietka, T. A. & Eyre, D. R. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum. 48, 3130–3139 (2003).

    CAS  PubMed  Google Scholar 

  22. Tak, P. P. et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 40, 217–225 (1997).

    CAS  PubMed  Google Scholar 

  23. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Vossenaar, E. R. et al. The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum. 50, 3485–3494 (2004).

    CAS  PubMed  Google Scholar 

  25. Reece, R. J., Canete, J. D., Parsons, W. J., Emery, P. & Veale, D. J. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum. 42, 1481–1484 (1999).

    CAS  PubMed  Google Scholar 

  26. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    CAS  PubMed  Google Scholar 

  27. Mullan, R. H. et al. Early changes in serum type II collagen biomarkers predict radiographic progression at one year in inflammatory arthritis patients after biologic therapy. Arthritis Rheum. 56, 2919–2928 (2007).

    CAS  PubMed  Google Scholar 

  28. Månsson, B. et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J. Clin. Invest. 95, 1071–1077 (1995).

    PubMed  PubMed Central  Google Scholar 

  29. Biniecka, M. et al. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann. Rheum. Dis. 69, 1172–1178 (2010).

    PubMed  Google Scholar 

  30. Levick, J. R. Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum. 24, 1550–1560 (1981).

    CAS  PubMed  Google Scholar 

  31. Dahl, L. B., Dahl, I. M., Engström-Laurent, A. & Granath, K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann. Rheum. Dis. 44, 817–822 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Decker, B., McKenzie, B. F., McGuckin, W. F. & Slocumb, C. H. Comparative distribution of proteins and glycoproteins of serum and synovial fluid. Arthritis Rheum. 2, 162–177 (1959).

    CAS  PubMed  Google Scholar 

  33. Swann, D. A. et al. Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 33, 318–326 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hui, A. Y., McCarty, W. J., Masuda, K., Firestein, G. S. & Sah, R. L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 15–37 (2012).

    CAS  PubMed  Google Scholar 

  35. Rooney, M., Whelan, A., Feighery, C. & Bresnihan, B. Changes in lymphocyte infiltration of the synovial membrane and the clinical course of rheumatoid arthritis. Arthritis Rheum. 32, 361–369 (1989).

    CAS  PubMed  Google Scholar 

  36. Firestein, G. S., Paine, M. M. & Boyle, D. L. Mechanisms of methotrexate action in rheumatoid arthritis. Arthritis Rheum. 37, 193–200 (1994).

    CAS  PubMed  Google Scholar 

  37. Tak, P. P. et al. Reduction of synovial inflammation after anti-CD4 monoclonal antibody treatment in early rheumatoid arthritis. Arthritis Rheum. 38, 1457–1465 (1995).

    CAS  PubMed  Google Scholar 

  38. Tak, P. P. et al. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor α monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum. 39, 1077–1081 (1996).

    CAS  PubMed  Google Scholar 

  39. Youssef, P. P. et al. Variability in cytokine and cell adhesion molecule staining in arthroscopic synovial biopsies: quantification using color video image analysis. J. Rheumatol. 24, 2291–2298 (1997).

    CAS  PubMed  Google Scholar 

  40. Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis: findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine. Arthritis Rheum. 43, 1820–1830 (2000).

    CAS  PubMed  Google Scholar 

  41. Gerlag, D. M. et al. Effects of oral prednisolone on biomarkers in synovial tissue and clinical improvement in rheumatoid arthritis. Arthritis Rheum. 50, 3783–3791 (2004).

    CAS  PubMed  Google Scholar 

  42. Cunnane, G., Madigan, A., Murphy, E., FitzGerald, O. & Bresnihan, B. The effects of treatment with interleukin-1 receptor antagonist on the inflamed synovial membrane in rheumatoid arthritis. Rheumatology (Oxford) 40, 62–69 (2001).

    CAS  Google Scholar 

  43. Catrina, A. I. et al. Anti-tumour necrosis factor (TNF)-α therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford) 41, 484–489 (2002).

    CAS  Google Scholar 

  44. Smeets, T. J. M., Kraan, M. C., van Loon, M. E. & Tak, P. Tumor necrosis factor α blockade reduces the synovial cell infiltrate early after initiation of treatment, but apparently not by induction of apoptosis in synovial tissue. Arthritis Rheum. 48, 2155–2162 (2003).

    CAS  PubMed  Google Scholar 

  45. Kraan, M. C. et al. Differential effects of leflunomide and methotrexate on cytokine production in rheumatoid arthritis. Ann. Rheum. Dis. 63, 1056–1061 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rooney, T. et al. Synovial tissue interleukin-18 expression and the response to treatment in patients with inflammatory arthritis. Ann. Rheum. Dis. 63, 1393–1398 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van Holten, J. et al. A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 64–69 (2005).

    CAS  PubMed  Google Scholar 

  48. Catrina, A. I. et al. Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum. 54, 76–81 (2006).

    CAS  PubMed  Google Scholar 

  49. Haringman, J. J. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54, 2387–2392 (2006).

    CAS  PubMed  Google Scholar 

  50. Makrygiannakis, D. et al. Intraarticular corticosteroids decrease synovial RANKL expression in inflammatory arthritis. Arthritis Rheum. 54, 1463–1472 (2006).

    CAS  PubMed  Google Scholar 

  51. Gerlag, D. M. & Tak, P. P. Novel approaches for the treatment of rheumatoid arthritis: lessons from the evaluation of synovial biomarkers in clinical trials. Best Pract. Res. Clin. Rheumatol. 22, 311–323 (2008).

    CAS  PubMed  Google Scholar 

  52. Harty, L. C., Gerlag, D. M., Pitzalis, C., Veale, D. J. & Tak, P. P. Synovial tissue analysis for the discovery of diagnostic and prognostic biomarkers in patients with early arthritis. J. Rheumatol. 38, 2068–2072 (2011).

    PubMed  Google Scholar 

  53. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    CAS  PubMed  Google Scholar 

  54. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    CAS  PubMed  Google Scholar 

  55. van Kuijk, A. W. et al. CCR5 blockade in rheumatoid arthritis: a randomised, double-blind, placebo-controlled clinical trial. Arthritis Rheum. 54, 2387–2392 (2006).

    Google Scholar 

  56. Vergunst, C. E. et al. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46, 1773–1778 (2007).

    CAS  Google Scholar 

  57. Boumans, M. J. et al. Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ASK8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study. Ann. Rheum. Dis. 71, 180–185 (2012).

    CAS  PubMed  Google Scholar 

  58. Gerlag, D. & Tak, P. P. How to perform and analyse synovial biopsies. Best Pract. Res. Clin. Rheumatol. 23, 221–232 (2009).

    PubMed  Google Scholar 

  59. Kane, D., Veale, D. J., FitzGerald, O. & Reece, R. Survey of arthroscopy performed by rheumatologists. Rheumatology (Oxford) 41, 210–215 (2002).

    CAS  Google Scholar 

  60. Lazarou, I. et al. Ultrasound-guided synovial biopsy: a systematic review according to the OMERACT filter and recommendations for minimal reporting standards in clinical studies. Rheumatology (Oxford) 54, 1867–1875 (2015).

    Google Scholar 

  61. Youssef, P. P. et al. Quantitative microscopic analysis of inflammation in rheumatoid arthritis synovial membrane samples selected at arthroscopy compared with samples obtained blindly by needle biopsy. Arthritis Rheum. 41, 663–669 (1998).

    CAS  PubMed  Google Scholar 

  62. Kirkham, B. et al. Intraarticular variability of synovial membrane histology, immunohistology, and cytokine mRNA expression in patients with rheumatoid arthritis. J. Rheumatol. 26, 777–784 (1999).

    CAS  PubMed  Google Scholar 

  63. Smeets, T. J. M. et al. Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage–pannus junction in patients with RA. Ann. Rheum. Dis. 60, 561–565 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Soden, M. et al. Immunohistological features in the synovium obtained from clinically uninvolved knee joints of patients with rheumatoid arthritis. Br. J. Rheumatol. 28, 287–292 (1989).

    CAS  PubMed  Google Scholar 

  65. Smith, M. D. et al. Standardisation of synovial tissue infiltrate analysis: how far have we come? How much further do we need to go? Ann. Rheum. Dis. 65, 93–100 (2006).

    CAS  PubMed  Google Scholar 

  66. Mateos, J. et al. Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC–MALDI TOF/TOF. J. Proteomics 75, 2869–2878 (2012).

    CAS  PubMed  Google Scholar 

  67. Biswas, S. et al. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach. PLoS ONE 8, e56246 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bresnihan, B., Tak, P. P., Emery, P., Klareskog, L. & Breedveld, F. Synovial biopsy in arthritis research: five years of concerted European collaboration. Ann. Rheum. Dis. 59, 506–511 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kraan, M. C. et al. Alefacept treatment in psoriatic arthritis: reduction of the effector T cell population in peripheral blood and synovial tissue is associated with improvement of clinical signs of arthritis. Arthritis Rheum. 46, 2776–2784 (2002).

    CAS  PubMed  Google Scholar 

  70. Cañete, J. D. et al. Distinct synovial immunopathology in Behcet disease and psoriatic arthritis. Arthritis Res. Ther. 11, R17 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. van Kuijk, A. W. & Tak, P. P. Synovitis in psoriatic arthritis: immunohistochemistry, comparisons with rheumatoid arthritis, and effects of therapy. Curr. Rheumatol. Rep. 13, 353–359 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Kobezda, T., Ghassemi-Nejad, S., Mikecz, K., Glant, T. T. & Szekanecz, Z. Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat. Rev. Rheumatol. 10, 160–170 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Basdeo, S. A. et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells. J. Immunol. 198, 2249–2259 (2017).

    CAS  PubMed  Google Scholar 

  74. Firestein, G. S. & McInnes, I. B. Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kraan, M. C. et al. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 46, 2034–2038 (2002).

    PubMed  Google Scholar 

  76. Kraan, M. C. et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum. 41, 1481–1488 (1998).

    CAS  PubMed  Google Scholar 

  77. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 23, 14852 (2017).

    Google Scholar 

  79. de Hair, M. J. et al. Synovial tissue analysis for the discovery of diagnostic and prognostic biomarkers in patients with early arthritis. J. Rheumatol. 38, 2068–2072 (2011).

    PubMed  Google Scholar 

  80. van der Heijde, D. M. Joint erosions and patients with early rheumatoid arthritis. Br. J. Rheumatol. 34 (Suppl. 2), 74–78 (1995).

    PubMed  Google Scholar 

  81. Lard, L. R. et al. Early versus delayed treatment in patients with recent-onset rheumatoid arthritis: comparison of two cohorts who received different treatment strategies. Am. J. Med. 111, 446–451 (2001).

    CAS  PubMed  Google Scholar 

  82. van der Heijde, A. et al. The effectiveness of early treatment with 'second-line' antirheumatic drugs. A randomized, controlled trial. Ann. Intern. Med. 124, 699–707 (1996).

    Google Scholar 

  83. Finckh, A., Liang, M. H., van Herckenrode, C. M. & de Pablo, P. Long-term impact of early treatment on radiographic progression in rheumatoid arthritis: a meta-analysis. Arthritis Rheum. 55, 864–872 (2006).

    PubMed  Google Scholar 

  84. Whiting, P. F. et al. Systematic review: accuracy of anti-citrullinated peptide antibodies for diagnosing rheumatoid arthritis. Ann. Intern. Med. 152, 456–466 (2010).

    PubMed  Google Scholar 

  85. Lee, D. M. & Schur, P. H. Clinical utility of the anti-CCP assay in patients with rheumatic diseases. Ann. Rheum. Dis. 62, 870–874 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bos, W. H. et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann. Rheum. Dis. 69, 490–494 (2010).

    CAS  PubMed  Google Scholar 

  87. Nielen, M. M. J. et al. Antibodies to citrullinated human fibrinogen (ACF) have diagnostic and prognostic value in early arthritis. Ann. Rheum. Dis. 64, 1199–1204 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. de Hair, M. J. et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis. Arthritis Rheum. 66, 513–522 (2014).

    CAS  Google Scholar 

  89. van de Sande, M. G. et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann. Rheum. Dis. 70, 772–777 (2011).

    CAS  PubMed  Google Scholar 

  90. Anderson, A. E. et al. IL-6-driven STAT signalling in circulating CD4+ lymphocytes is a marker for early anticitrullinated peptide antibody-negative rheumatoid arthritis. Ann. Rheum. Dis. 75, 466–473 (2016).

    CAS  PubMed  Google Scholar 

  91. Hensvold, A. H. et al. Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res. Ther. 17, 239 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Gerlag, D. M., Norris, J. M. & Tak, P. P. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology (Oxford) 55, 607–614 (2016).

    CAS  Google Scholar 

  93. Reynisdottir, G. et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann. Rheum. Dis. 75, 1722–1727 (2016).

    CAS  PubMed  Google Scholar 

  94. van Baarsen, L. G. et al. The cellular composition of lymph nodes in the earliest phase of inflammatory arthritis. Ann. Rheum. Dis. 72, 1420–1424 (2013).

    CAS  PubMed  Google Scholar 

  95. Baeten, D. et al. Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity. Ann. Rheum. Dis. 59, 945–953 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

    CAS  PubMed  Google Scholar 

  97. Whitaker, J. W. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yeo, L. et al. Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann. Rheum. Dis. 75, 763–771 (2016).

    CAS  PubMed  Google Scholar 

  99. Kraan, M. C. et al. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology (Oxford) 38, 1074–1080 (1999).

    CAS  Google Scholar 

  100. van de Sande, M. G. et al. Local synovial engagement of angiogenic TIE-2 is associated with the development of persistent erosive rheumatoid arthritis in patients with early arthritis. Arthritis Rheum. 65, 3073–3083 (2013).

    CAS  PubMed  Google Scholar 

  101. de Launay, D. et al. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): a prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Ann. Rheum. Dis. 71, 415–423 (2012).

    CAS  PubMed  Google Scholar 

  102. Drossaers-Bakker, K. W. et al. Long-term outcome in rheumatoid arthritis: a simple algorithm of baseline parameters can predict radiographic damage, disability, and disease course at 12-year followup. Arthritis Rheum. 47, 383–390 (2002).

    CAS  PubMed  Google Scholar 

  103. Scott, D. L. The diagnosis and prognosis of early arthritis: rationale for new prognostic criteria. Arthritis Rheum. 46, 286–290 (2002).

    PubMed  Google Scholar 

  104. Lindstrom, T. M. & Robinson, W. H. Biomarkers for rheumatoid arthritis: making it personal. Scand. J. Clin. Lab. Investig. 70, 79–84 (2010).

    CAS  Google Scholar 

  105. Trusheim, M. R., Berndt, E. R. & Douglas, F. L. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 6, 287–293 (2007).

    CAS  PubMed  Google Scholar 

  106. Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    CAS  PubMed  Google Scholar 

  107. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005).

    CAS  PubMed  Google Scholar 

  108. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    CAS  PubMed  Google Scholar 

  109. Pitzalis, C. et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  110. Thurlings, R. M. et al. Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype. Arthritis Rheum. 58, 1582–1589 (2008).

    PubMed  Google Scholar 

  111. Cantaert, T. et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181, 785–794 (2008).

    CAS  PubMed  Google Scholar 

  112. Klaasen, R. et al. The relationship between synovial lymphocyte aggregates and the clinical response to infliximab in rheumatoid arthritis: a prospective study. Arthritis Rheum. 60, 3217–3224 (2009).

    CAS  PubMed  Google Scholar 

  113. van de Sande, M. G. et al. Presence of lymphocyte aggregates in the synovium of patients with early arthritis in relationship to diagnosis and outcome: is it a constant feature over time? Ann. Rheum. Dis. 70, 700–703 (2011).

    PubMed  Google Scholar 

  114. Lindberg, J. et al. The gene expression profile in the synovium as a predictor of the clinical response to infliximab treatment in rheumatoid arthritis. PLoS ONE 5, e11310 (2010).

    PubMed  PubMed Central  Google Scholar 

  115. Dolhain, R. J. et al. Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Rheumatology (Oxford) 37, 502–508 (1998).

    CAS  Google Scholar 

  116. Walsh, C. A. E., Fearon, U., FitzGerald, O., Veale, D. J. & Bresnihan, B. Decreased CD20 expression in rheumatoid arthritis synovium following 8 weeks of rituximab therapy. Clin. Exp. Rheumatol. 26, 656 (2008).

    CAS  PubMed  Google Scholar 

  117. Vos, K. et al. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum. 56, 772–778 (2007).

    CAS  PubMed  Google Scholar 

  118. Bresnihan, B. et al. Synovial macrophages as a biomarker of response to therapeutic intervention in rheumatoid arthritis: standardization and consistency across centers. J. Rheumatol. 36, 1800–1802 (2009).

    PubMed  Google Scholar 

  119. Kavanaugh, A. et al. Assessment of rituximab's immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    CAS  PubMed  Google Scholar 

  120. Yanni, G., Nabil, M., Farahat, M. R., Poston, R. N. & Panayi, G. S. Intramuscular gold decreases cytokine expression and macrophage numbers in the rheumatoid synovial membrane. Ann. Rheum. Dis. 53, 315–322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Smith, M. D. et al. Treatment-induced remission in rheumatoid arthritis patients is characterized by a reduction in macrophage content of synovial biopsies. Rheumatology (Oxford) 40, 367–374 (2001).

    CAS  Google Scholar 

  122. Wijbrandts, C. A. et al. The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor α expression in the synovium. Ann. Rheum. Dis. 67, 1139–1144 (2008).

    CAS  PubMed  Google Scholar 

  123. Haringman, J. J. et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834–838 (2005).

    CAS  PubMed  Google Scholar 

  124. Boumans, M. J. et al. Response to rituximab in patients with rheumatoid arthritis in different compartments of the immune system. Arthritis Rheum. 63, 3187–3194 (2011).

    CAS  PubMed  Google Scholar 

  125. Wijbrandts, C. A. et al. Absence of changes in the number of synovial sublining macrophages after ineffective treatment for rheumatoid arthritis: implications for use of synovial sublining macrophages as a biomarker. Arthritis Rheum. 56, 3869–3871 (2007).

    PubMed  Google Scholar 

  126. Bresnihan, B. et al. Synovial tissue analysis in clinical trials. J. Rheumatol. 32, 2481–2484 (2005).

    PubMed  Google Scholar 

  127. Buch, M. H. et al. Mode of action of abatacept in rheumatoid arthritis patients having failed tumour necrosis factor blockade: a histological, gene expression and dynamic magnetic resonance imaging pilot study. Ann. Rheum. Dis. 68, 1220–1227 (2009).

    CAS  PubMed  Google Scholar 

  128. Boyle, D. L. et al. The JAK inhibitor tofacitinib suppresses synovial JAK1–STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1311–1316 (2015).

    CAS  PubMed  Google Scholar 

  129. Haringman, J. J., Kraan, M. C., Smeets, T. J., Zwinderman, K. H. & Tak, P. P. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 715–721 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tak, P. P. et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann. Rheum. Dis. 72, 337–344 (2012).

    PubMed  Google Scholar 

  131. Mullan, R. H. et al. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-κB-dependent signal transduction pathway. Arthritis Rheum. 54, 105–114 (2006).

    CAS  PubMed  Google Scholar 

  132. Connolly, M. et al. Acute serum amyloid A is an endogenous TLR2 ligand that mediates inflammatory and angiogenic mechanisms. Ann. Rheum. Dis. 75, 1392–1398 (2016).

    CAS  PubMed  Google Scholar 

  133. Connolly, M., Veale, D. J. & Fearon, U. Acute serum amyloid A regulates cytoskeletal rearrangement, cell matrix interactions and promotes cell migration in rheumatoid arthritis. Ann. Rheum. Dis. 70, 1296–1303 (2011).

    CAS  PubMed  Google Scholar 

  134. Haringman, J. J., Ludikhuize, J. & Tak, P. P. Chemokines in joint disease: the key to inflammation? Ann. Rheum. Dis. 63, 1186–1194 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kraan, M. C. et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin-8). Arthritis Res. 3, 65–71 (2001).

    CAS  PubMed  Google Scholar 

  136. Kang, K. Y. et al. S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients. Kor. J. Intern. Med. 29, 12–19 (2014).

    CAS  Google Scholar 

  137. Wittkowski, H. et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 70, 2075–2081 (2011).

    CAS  PubMed  Google Scholar 

  138. Meijer, B., Gearry, R. B. & Day, A. S. The role of S100A12 as a systemic marker of inflammation. Int. J. Inflam 2012, 907078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liao, H. et al. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum. 50, 3792–3803 (2004).

    CAS  PubMed  Google Scholar 

  140. Green, M. J. et al. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 42, 83–88 (2003).

    CAS  Google Scholar 

  141. Ishiguro, N. et al. Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum. 44, 2503–2511 (2001).

    CAS  PubMed  Google Scholar 

  142. Chandran, V. Soluble biomarkers may differentiate psoriasis from psoriatic arthritis. J. Rheumatol. 89, 65–66 (2012).

    Google Scholar 

  143. Boumans, M. J. et al. Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann. Rheum. Dis. 71, 108–113 (2012).

    CAS  PubMed  Google Scholar 

  144. Masson-Bessiere, C. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the α- and β-chains of fibrin. J. Immunol. 166, 4177–4184 (2001).

    CAS  PubMed  Google Scholar 

  145. Després, N., Boire, G., Lopez-Longo, F. J. & Ménard, H. A. The Sa system: a novel antigen-antibody system specific for rheumatoid arthritis. J. Rheumatol. 21, 1027–1033 (1994).

    PubMed  Google Scholar 

  146. Baeten, D. et al. Specific presence of intracellular citrullinated proteins in rheumatoid arthritis synovium: relevance to antifilaggrin autoantibodies. Arthritis Rheum. 44, 2255–2262 (2001).

    CAS  PubMed  Google Scholar 

  147. Masson-Bessiere, C. et al. In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum. Clin. Exp. Immunol. 119, 544–552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Woetzel, D. et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res. Ther. 16, R84 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Huber, R. et al. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane. Arthritis Res. Ther. 10, R98 (2008).

    PubMed  PubMed Central  Google Scholar 

  150. van der Pouw Kraan, T. C. et al. Responsiveness to anti-tumour necrosis factor α therapy is related to pre-treatment tissue inflammation levels in rheumatoid arthritis patients. Ann. Rheum. Dis. 67, 563–566 (2008).

    CAS  PubMed  Google Scholar 

  151. Badot, V. et al. Gene expression profiling in the synovium identifies a predictive signature of absence of response to adalimumab therapy in rheumatoid arthritis. Arthritis Res. Ther. 11, R57 (2009).

    PubMed  PubMed Central  Google Scholar 

  152. Gutierrez-Roelens, I. et al. Rituximab treatment induces the expression of genes involved in healing processes in the rheumatoid arthritis synovium. Arthritis Rheum. 63, 1246–1254 (2011).

    CAS  PubMed  Google Scholar 

  153. Colburn, W. A. Selecting and validating biologic markers for drug development. J. Clin. Pharmacol. 37, 355–362 (1997).

    CAS  PubMed  Google Scholar 

  154. van de Sande, M. G. H. et al. Evaluating antirheumatic treatments using synovial biopsy: a recommendation for standardisation to be used in clinical trials. Ann. Rheum. Dis. 70, 423–427 (2011).

    CAS  PubMed  Google Scholar 

  155. Choi, I. Y., Gerlag, D. M., Holzinger, D., Roth, J. & Tak, P. P. From synovial tissue to peripheral blood: myeloid related protein 8/14 is a sensitive biomarker for effective treatment in early drug development in patients with rheumatoid arthritis. PLoS ONE 9, e106253 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Dennis, G. Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Tan, P. K. et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 31, 5676–5684 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, W. et al. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann. Rheum. Dis. 72, 1080–1088 (2013).

    CAS  PubMed  Google Scholar 

  160. Ebhardt, H. A. et al. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15, 3193–3208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Smith, S. L., Plant, D., Eyre, S. & Barton, A. The potential use of expression profiling: implications for predicting treatment response in rheumatoid arthritis. Ann. Rheum. Dis. 72, 1118–1124 (2013).

    CAS  PubMed  Google Scholar 

  162. Häupl, T., Stuhlmüller, B., Grützkau, A., Radbruch, A. & Burmester, G. R. Does gene expression analysis inform us in rheumatoid arthritis? Ann. Rheum. Dis. 69, i37–i42 (2010).

    PubMed  Google Scholar 

  163. van Baarsen, L. G. M. et al. Synovial tissue heterogeneity in rheumatoid arthritis in relation to disease activity and biomarkers in peripheral blood. Arthritis Rheum. 62, 1602–1607 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in the European Synovitis Study Group and in the OMERACT group who have supported the development of synovial tissue research.

Author information

Authors and Affiliations

Authors

Contributions

D.J.V., C.O., U.F., A.N., A.P., S.W.T. and J.E.F. researched data for the article, made a substantial contribution to the discussion of article content, wrote the manuscript, and reviewed and edited the manuscript before submission. E.V.-S., F.H., S.A.J., T. McG. and R.T. researched data for the article, wrote the manuscript, and reviewed and edited the manuscript before submission. A.F. researched data for the article, and reviewed and edited the manuscript before submission. B.R.L. wrote the manuscript, and reviewed and edited the manuscript before submission. D.L.B., M.H.B., C.D.B., J.D.C., A.I.C., E.H.C., P.E., D.G., J.D.I., B.L., A.M., I.B.M., C.P., M.S. and P.P.T. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Douglas J. Veale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Fibroblast-like synoviocytes

(FLSs). Also known as type B synovial lining cells, FLSs account for the majority of cells in the synovial lining layer.

Intimal lining layer

The lining of the synovium comprising a few cells without a basement membrane and which covers the nonarticular surface of the joint capsule.

Synovial sublining

A loose connective tissue that lies beneath the intimal lining of the synovium.

Pannus

A 'tumour-like' mass of hyperplastic synovial tissue that expands into the joint, invading into bone and cartilage.

Arthroplasty

Surgical reconstruction or replacement of a synovial joint.

Arthroscopic biopsy

Minimally invasive procedure to examine a synovial joint using an endoscope.

Ex-TH17 cells

T helper 17 (TH17) cells can switch to become ex-TH17 cells that no longer produce IL-17 but have the ability to produce IFNγ.

Positional memory

Cells might demonstrate different DNA 'fingerprints' depending on the site of the body at which they reside.

Undifferentiated arthritis

Inflammatory oligoarthritis or polyarthritis that does not conform to any of the recognized inflammatory arthritis types.

Disease stratification

The concept that a disease can be classified into distinct subsets that exhibit differential outcomes and responses, and that can each be labelled by a biomarker or a combination of biomarkers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, C., Vieira-Sousa, E., Boyle, D. et al. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol 13, 463–475 (2017). https://doi.org/10.1038/nrrheum.2017.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing