Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Subversion of the actin cytoskeleton during viral infection

Key Points

  • Actin is a ubiquitous cellular protein that forms a foundation for cellular structure and integrity. Viruses are obligate intracellular parasites with a replication cycle that requires them to engage and modify the actin cytoskeleton at all stages, from entry through replication to egress and spread.

  • Oncogenic proteins of transforming viruses interfere with the RHO-family GTPases (actin-signalling molecules) to change cellular dynamics from a quiescent to a mitotic state. The actin cytoskeleton is altered dramatically, cell shape changes, and cell-to-cell contact and matrix adhesion are lost, while podosomes and membrane ruffles appear on the cell surface.

  • Virus-mediated oncogenic transformation can result in metastatic tumours in humans, such as nasopharyngeal, hepatocellular and cervical carcinomas (induced by Epstein–Barr virus, hepatitis B virus and human papillomavirus, respectively). In vitro, viral proteins increase cell migration by disrupting and modulating actin dynamics. The host proteins involved in these interactions may be specific cytoskeletal targets for antimetastatic therapies.

  • Virions often interact with the underlying actin cytoskeleton to gain entry to the cell. Virions may move to entry sites using high-affinity interactions with receptors that are associated with actin filaments inside the cell. Movement is promoted by myosin motors that drive the actin cytoskeleton, pulling the receptor–virion complex across the plasma membrane. Virion entry by endocytic processes or formation of the fusion pore also often involves cortical actin.

  • Actin structures can be modified during viral infection to produce long cellular extensions (for example, filopodia and tunnelling nanotubes). These structures facilitate the long-distance dissemination of a wide range of viruses, including vaccinia virus, herpes simplex viruses, HIV and rotaviruses.

  • Most actin–virus interactions have been discovered in isolated or cultured cell systems. The next generation of research will apply this knowledge to viral infections in vivo to understand the role of viral subversion of the actin cytoskeleton in disease.

Abstract

Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin filament dynamics.
Figure 2: RHO-family GTPase-mediated modelling of the actin cytoskeleton.
Figure 3: Manifestations of actin rearrangement.
Figure 4: Models of entry.
Figure 5: Actin involvement in viral replication and egress.

Similar content being viewed by others

References

  1. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weaver, A. M., Young, M. E., Lee, W.-L. & Cooper, J. A. Integration of signals to the Arp2/3 complex. Curr. Opin. Cell Biol. 15, 23–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Weisswange, I., Newsome, T. P., Schleich, S. & Way, M. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458, 87–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Carlier, M.-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DesMarais, V., Macaluso, F., Condeelis, J. & Bailly, M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J. Cell Sci. 117, 3499–3510 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Yamashiro, S., Yamakita, Y., Ono, S. & Matsumura, F. Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility of epithelial cells. Mol. Biol. Cell 9, 993–1006 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumura, F., Yamashiro-Matsumura, S. & Lin, J. J. Isolation and characterization of tropomyosin-containing microfilaments from cultured cells. J. Biol. Chem. 258, 6636–6644 (1983).

    CAS  PubMed  Google Scholar 

  9. Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol. 3, 259–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz, A. A., Govek, E. E., Bottner, B. & Van Aelst, L. Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. 261, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008). A recent and extensive review on the biology of RHO-family GTPases.

    Article  CAS  Google Scholar 

  13. Gouin, E., Welch, M. D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Münter, S., Way, M. & Frischknecht, F. Signaling during pathogen infection. Sci. STKE 2006, re5 (2006). A comprehensive review on how pathogen infection affects signalling mechanisms.

    PubMed  Google Scholar 

  15. Favoreel, H. W., Enquist, L. W. & Feierbach, B. Actin and Rho GTPases in herpesvirus biology. Trends Microbiol. 15, 426–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Fleissner, E. & Tress, E. Chromatographic and electrophoretic analysis of viral proteins from hamster and chicken cells transformed by Rous sarcoma virus. J. Virol. 11, 250–262 (1973). The earliest work on RSV-induced cytoskeletal changes.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McNutt, N. S., Culp, L. A. & Black, P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb-c 3T3 cells. J. Cell Biol. 56, 412–428 (1973). The earliest report on SV40-induced cell transformation and morphological changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldman, R. D., Chang, C. & Williams, J. F. Properties and behavior of hamster embryo cells transformed by human adenovirus type 5. Cold Spring Harb. Symp. Quant. Biol. 39, 601–614 (1975).

    Article  PubMed  Google Scholar 

  19. Wang, E. & Goldberg, A. R. Changes in microfilament organization and surface topogrophy upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc. Natl Acad. Sci. USA 73, 4065–4069 (1976). The earliest demonstration of the gradual changes in cell morphology that occur as a result of cell transformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackson, P. & Bellett, A. J. Relationship between organization of the actin cytoskeleton and the cell cycle in normal and adenovirus-infected rat cells. J. Virol. 63, 311–318 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev. 28, 5–14 (2009).

    Article  PubMed  Google Scholar 

  22. Marchisio, P. C., Capasso, O., Nitsch, L., Cancedda, R. & Gionti, E. Cytoskeleton and adhesion patterns of cultured chick embryo chondrocytes during cell spreading and Rous sarcoma virus transformation. Exp. Cell Res. 151, 332–343 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Boschek, C. B. et al. Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24, 175–184 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. McClain, D. A., Maness, P. F. & Edelman, G. M. Assay for early cytoplasmic effects of the src gene product of Rous sarcoma virus. Proc. Natl Acad. Sci. USA 75, 2750–2754 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kellie, S., Horvath, A. R. & Elmore, M. A. Cytoskeletal targets for oncogenic tyrosine kinases. J. Cell Sci. 99, 207–211 (1991).

    CAS  PubMed  Google Scholar 

  26. Rohrschneider, L. R. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl Acad. Sci. USA 77, 3514–3518 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shriver, K. & Rohrschneider, L. Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells. J. Cell Biol. 89, 525–535 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Hiura, K., Lim, S. S., Little, S. P., Lin, S. & Sato, M. Differentiation dependent expression of tensin and cortactin in chicken osteoclasts. Cell Motil. Cytoskeleton 30, 272–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Sefton, B. M., Hunter, T., Ball, E. H. & Singer, S. J. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell 24, 165–174 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Yoo, Y., Ho, H. J., Wang, C. & Guan, J. L. Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 29, 263–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Burns, S., Thrasher, A. J., Blundell, M. P., Machesky, L. & Jones, G. E. Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 98, 1142–1149 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Hai, C. M., Hahne, P., Harrington, E. O. & Gimona, M. Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. Exp. Cell Res. 280, 64–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Moreau, V., Tatin, F., Varon, C. & Genot, E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol. Cell Biol. 23, 6809–6822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sato, T. et al. Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. J. Cell Sci. 110, 589–596 (1997).

    CAS  PubMed  Google Scholar 

  35. Saltel, F. et al. Invadosomes: Intriguing structures with promise. Eur. J. Cell Biol. 90, 100–107 (2011). A recent review about invadopodia, connecting earlier observations and nomenclature with recent literature.

    Article  CAS  PubMed  Google Scholar 

  36. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E. & Block, M. R. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Felice, G. R., Eason, P., Nermut, M. V. & Kellie, S. pp60v-src association with the cytoskeleton induces actin reorganization without affecting polymerization status. Eur. J. Cell Biol. 52, 47–59 (1990).

    CAS  PubMed  Google Scholar 

  38. Carley, W. W., Lipsky, M. G. & Webb, W. W. Regulation and drug insensitivity of F-actin association with adhesion areas of transformed cells. J. Cell Physiol. 117, 257–265 (1983).

    Article  CAS  PubMed  Google Scholar 

  39. Owada, M. K. et al. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc. Natl Acad. Sci USA 81, 3133–3137 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, E., Yin, H. L., Krueger, J. G., Caliguiri, L. A. & Tamm, I. Unphosphorylated gelsolin is localized in regions of cell-substratum contact or attachment in Rous sarcoma virus-transformed rat cells. J. Cell Biol. 98, 761–771 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Hendricks, M. & Weintraub, H. Tropomyosin is decreased in transformed cells. Proc. Natl Acad. Sci. USA 78, 5633–5637 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostap, E. M. Tropomyosins as discriminators of myosin function. Adv. Exp. Med. Biol. 644, 273–282 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bernstein, B. W. & Bamburg, J. R. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil. 2, 1–8 (1982).

    Article  CAS  PubMed  Google Scholar 

  44. Graessmann, A., Graessmann, M., Tjian, R. & Topp, W. C. Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. J. Virol. 33, 1182–1191 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nunbhakdi-Craig, V., Craig, L., Machleidt, T. & Sontag, E. Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J. Virol. 77, 2807–2818 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Endter, C. & Dobner, T. Cell transformation by human adenoviruses. Curr. Top. Microbiol. Immunol. 273, 163–214 (2004).

    CAS  PubMed  Google Scholar 

  47. Nielsch, U., Fognani, C. & Babiss, L. E. Adenovirus E1A-p105(Rb) protein interactions play a direct role in the initiation but not the maintenance of the rodent cell transformed phenotype. Oncogene 6, 1031–1036 (1991).

    CAS  PubMed  Google Scholar 

  48. Bellett, A. J., Jackson, P., David, E. T., Bennett, E. J. & Cronin, B. Functions of the two adenovirus early E1A proteins and their conserved domains in cell cycle alteration, actin reorganization, and gene activation in rat cells. J. Virol. 63, 303–310 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fischer, R. S. & Quinlan, M. P. While E1A can facilitate epithelial cell transformation by several dominant oncogenes, the C-terminus seems only to regulate rac and cdc42 function, but in both epithelial and fibroblastic cells. Virology 269, 404–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Bachvaroff, R. J., Klein, G. & Rapaport, F. T. Alterations in cell characteristics in relation to malignant transformation. Transplant Proc. 11, 1055–1059 (1979).

    CAS  PubMed  Google Scholar 

  51. Lamelin, J. P., Williams, E. H., Souissi, T., De-The, G. & Gabbiani, G. Smooth muscle antibody in Burkitt's lymphoma and in nasopharyngeal carcinoma. Clin. Exp. Immunol. 28, 157–162 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bachvaroff, R. J., Miller, F. & Rapaport, F. T. Appearance of cytoskeletal components on the surface of leukemia cells and of lymphocytes transformed by mitogens and Epstein–Barr virus. Proc. Natl Acad. Sci. USA 77, 4979–4983 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smalheiser, N. R. Proteins in unexpected locations. Mol. Biol. Cell 7, 1003–1014 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arnoys, E. J. & Wang, J. L. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem. 109, 89–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Mosialos, G. et al. Epstein-Barr virus infection induces expression in B lymphocytes of a novel gene encoding an evolutionarily conserved 55-kilodalton actin-bundling protein. J. Virol. 68, 7320–7328 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ishikawa, R., Yamashiro, S., Kohama, K. & Matsumura, F. Regulation of actin binding and actin bundling activities of fascin by caldesmon coupled with tropomyosin. J. Biol. Chem. 273, 26991–26997 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Tseng, Y., Fedorov, E., McCaffery, J. M., Almo, S. C. & Wirtz, D. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with α-actinin. J. Mol. Biol. 310, 351–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Spender, L. C. et al. Cell target genes of Epstein–Barr virus transcription factor EBNA-2: induction of the p55α regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J. Gen. Virol. 87, 2859–2867 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Tan, T. L. et al. Rac1 GTPase is activated by hepatitis B virus replication — involvement of HBX. Biochim. Biophys. Acta 1783, 360–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lara-Pezzi, E. et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 33, 1270–1281 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Charette, S. T. & McCance, D. J. The E7 protein from human papillomavirus type 16 enhances keratinocyte migration in an Akt-dependent manner. Oncogene 26, 7386–7390 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Wu, R., Coniglio, S. J., Chan, A., Symons, M. H. & Steinberg, B. M. Up-regulation of Rac1 by epidermal growth factor mediates COX-2 expression in recurrent respiratory papillomas. Mol. Med. 13, 143–150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biol. 8, 215–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317–325 (2005). The earliest description of viral surfing as it relates to viral entry and infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schelhaas, M. et al. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog. 4, e1000148 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, K.-C., Yasruel, Z., Guérin, C., Holland, P. C. & Nalbantoglu, J. Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: binding to actin. FEBS Lett. 581, 2702–2708 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Coyne, C. B. & Bergelson, J. M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Meier, O. & Greber, U. F. Adenovirus endocytosis. J. Gene Med. 6, S152–S163 (2004). An essential review covering virus-induced cytoskeletal changes and endocytosis.

    Article  PubMed  Google Scholar 

  70. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Ann. Rev. Biochem. 79, 803–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Greene, W. & Gao, S.-J. Actin dynamics regulate multiple endosomal steps during Kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLoS Pathog. 5, e1000512 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Quinn, K. et al. Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors. J. Virol. 83, 10176–10186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. J. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5, e1000394 (2009). A visually stunning analysis of VSV entry and the role of actin.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Brandenburg, B. et al. Imaging poliovirus entry in live cells. PLoS Biol. 5, e183 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Vaughan, J. C., Brandenburg, B., Hogle, J. M. & Zhuang, X. Rapid actin-dependent viral motility in live cells. Biophys. J. 97, 1647–1656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Veiga, E. & Cossart, P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. 16, 499–504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kallewaard, N. L., Bowen, A. L. & Crowe, J. E. Jr. Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology 331, 73–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Wurth, M. A. et al. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell–cell fusion. Virology 404, 117–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Pastey, M. K., Gower, T. L., Spearman, P. W., Crowe, J. E. Jr. & Graham, B. S. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nature Med. 6, 35–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Schowalter, R. M. et al. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell–cell fusion. Virology 350, 323–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Iyengar, S., Hildreth, J. E. K. & Schwartz, D. H. Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J. Virol. 72, 5251–5255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yoder, A. et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T Cells. Cell 134, 782–792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jimenez-Baranda, S. et al. Filamin-A regulates actin-dependent clustering of HIV receptors. Nature Cell Biol. 9, 838–846 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Harmon, B., Campbell, N. & Ratner, L. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog. 6, e1000956 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Clement, C. et al. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J. Cell Biol. 174, 1009–1021 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, J. L., Lidke, D. S. & Ozbun, M. A. Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology 381, 16–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Cantin, R., Methot, S. & Tremblay, M. J. Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J. Virol. 79, 6577–6587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Burke, E., Mahoney, N. M., Almo, S. C. & Barik, S. Profilin is required for optimal actin-dependent transcription of respiratory syncytial virus genome RNA. J. Virol. 74, 669–675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klauschies, F. et al. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments. Arch. Virol. 115, 1503–1508 (2010).

    Article  CAS  Google Scholar 

  90. Bucher, D. et al. M protein (M1) of influenza virus: antigenic analysis and intracellular localization with monoclonal antibodies. J. Virol. 63, 3622–3633 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Harpen, M., Barik, T., Musiyenko, A. & Barik, S. Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis. J. Virol. 83, 10869–10876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods 3, 817–824 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bukrinskaya, A., Brichacek, B., Mann, A. & Stevenson, M. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J. Exp. Med. 188, 2113–2125 (1998). A biochemical analysis of the association between actin and HIV particles at different stages post-entry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fackler, O. T. & Kräusslich, H.-G. Interactions of human retroviruses with the host cell cytoskeleton. Curr. Opin. Microbiol. 9, 409–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Jolly, C., Mitar, I. & Sattentau, Q. J. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J. Virol. 81, 5547–5560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sasaki, H., Ozaki, H., Karaki, H. & Nonomura, Y. Actin filaments play an essential role for transport of nascent HIV-1 proteins in host cells. Biochem. Biophys. Res. Commun. 316, 588–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, C. et al. Association of Gag multimers with filamentous actin during equine infectious anemia virus assembly. Curr. HIV Res. 5, 315–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Tyrrell, D. L. & Ehrnst, A. Transmembrane communication in cells chronically infected with measles virus. J. Cell Biol. 81, 396–402 (1979).

    Article  CAS  PubMed  Google Scholar 

  99. Takimoto, T. & Portner, A. Molecular mechanism of paramyxovirus budding. Virus Res. 106, 133–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Miazza, V., Mottet-Osman, G., Startchick, S., Chaponnier, C. & Roux., L. Sendai virus induced cytoplasmic actin remodeling correlates with efficient virus particle production. Virology 410, 7–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Bohn, W., Rutter, G., Hohenberg, H., Mannweiler, K. & Nobis, P. Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149, 91–106 (1986). A study producing high-quality electron micrographs that demonstrate the directional alignment of actin filaments with measles virions.

    Article  CAS  PubMed  Google Scholar 

  102. Stallcup, K. C., Raine, C. S. & Fields, B. N. Cytochalasin B inhibits the maturation of measles virus. Virology 124, 59–74 (1983).

    Article  CAS  PubMed  Google Scholar 

  103. Forest, T., Barnard, S. & Baines, J. D. Active intranuclear movement of herpesvirus capsids. Nature Cell Biol. 7, 429–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Feierbach, B., Piccinotti, S., Bisher, M., Denk, W. & Enquist, L. W. Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog. 2, e85 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W. & Knipe, D. M. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J. Virol. 79, 12840–12851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wagenaar, F. et al. The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J. Gen. Virol. 76, 1851–1859 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Ohkawa, T., Volkman, L. E. & Welch, M. D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 190, 187–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Roberts, K. L. & Baines, J. D. Myosin Va enhances secretion of herpes simplex virus 1 virions and cell surface expression of viral glycoproteins. J. Virol. 84, 9889–9896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sattentau, Q. Avoiding the void: cell-to-cell spread of human viruses. Nature Rev. Microbiol. 6, 815–826 (2008). A comprehensive review about the hurdles of cell-to-cell spread of viruses.

    Article  CAS  Google Scholar 

  110. Damsky, C. H., Sheffield, J. B., Tuszynski, G. P. & Warren, L. Is there a role for actin in virus budding? J. Cell Biol. 75, 593–605 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Akiyama, T. et al. Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro. J. Biol. Chem. 261, 14797–14803 (1986).

    CAS  PubMed  Google Scholar 

  112. Carlson, L. A. et al. Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog. 6, e1001173 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Maldarelli, F., King, N. W. Jr. & Yagi, M. J. Effects of cytoskeletal disrupting agents on mouse mammary tumor virus replication. Virus Res. 7, 281–295 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Eugenin, E. A., Gaskill, P. J. & Berman, J. W. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell. Immunol. 254, 142–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biol. 9, 310–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Haller, C., Rauch, S. & Fackler, O. T. HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS ONE 2, e1212 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Nobile, C. et al. HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J. Virol. 84, 2282–2293 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Stolp, B., Abraham, L., Rudolph, J. M. & Fackler, O. T. Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J. Virol. 84, 3935–3948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stolp, B. et al. HIV-1 Nef interferes with host cell motility by deregulation of cofilin. Cell Host Microbe 6, 174–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Rauch, S., Pulkkinen, K., Saksela, K. & Fackler, O. T. Human immunodeficiency virus type 1 nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J. Virol. 82, 2918–2929 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Minnebruggen, G. V., Favoreel, H. W., Jacobs, L. & Nauwynck, H. J. Pseudorabies virus US3 protein kinase mediates actin stress fibre breakdown. J. Virol. 77, 9074–9080 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Favoreel, H. W. et al. Alphaherpesvirus use and misuse of cellular actin and cholesterol. Vet. Microbiol. 143, 2–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Favoreel, H. W., Van Minnebruggen, G., Adriaensen, D. & Nauwynck, H. J. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an αherpesvirus are associated with enhanced spread. Proc. Natl Acad. Sci. USA 102, 8990–8995 (2005). An investigation that demonstrates the direct induction of cytoskeletal extensions by a herpesvirus protein kinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Van den Broeke, C.l. et al. Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc. Natl Acad. Sci.USA 106, 8707–8712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deruelle, M. J. & Favoreel, H. W. Keep it in the subfamily: the conserved alphaherpesvirus US3 protein kinase. J. Gen. Virol. 92, 18–30 (2010).

    Article  PubMed  CAS  Google Scholar 

  126. Berkova, Z., Crawford, S. E., Blutt, S. E., Morris, A. P. & Estes, M. K. Expression of rotavirus NSP4 alters the actin network organization through the actin remodeling protein cofilin. J. Virol. 81, 3545–3553 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gardet, A., Breton, M., Fontanges, P., Trugnan, G. & Chwetzoff, S. Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J. Virol. 80, 3947–3956 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gardet, A., Breton, M., Trugnan, G. & Chwetzoff, S. Role for actin in the polarized release of rotavirus. J. Virol. 81, 4892–4894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Valderrama, F., Cordeiro, J. V., Schleich, S., Frischknecht, F. & Way, M. Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311, 377–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Arakawa, Y., Cordeiro, J. V., Schleich, S., Newsome, T. P. & Way, M. The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1, 227–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Sanderson, C. M., Way, M. & Smith, G. L. Virus-induced cell motility. J. Virol. 72, 1235–1243 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cordeiro, J. V. et al. F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS ONE 4, e8506 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Hiller, G., Weber, K., Schneider, L., Parajsz, C. & Jungwirth, C. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98, 142–153 (1979).

    Article  CAS  PubMed  Google Scholar 

  134. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995). A seminal work on the role of actin-based motility in VV infection.

    Article  CAS  PubMed  Google Scholar 

  135. Wolffe, E. J., Weisberg, A. S. & Moss, B. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244, 20–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740–745 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873–876 (2010). A report that connects the history of VV-mediated actin modulation with long-distance viral spread and the observable phenomenon of plaque formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Reeves, P. M. et al. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on Abl and Src family tyrosine kinases. J. Virol. 85, 21–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Dodding, M. P. & Way, M. Nck- and N-WASP-dependent actin-based motility is conserved in divergent vertebrate poxviruses. Cell Host Microbe 6, 536–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Murti, K. G., Chen, M. & Goorha, R. Interaction of frog virus 3 with the cytomatrix: III. Role of microfilaments in virus release. Virology 142, 317–325 (1985).

    Article  CAS  PubMed  Google Scholar 

  142. Jouvenet, N. et al. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell. Microbiol. 8, 1803–1811 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Champagne, C., Landry, M. C., Gingras, M. C. & Lavoie, J. N. Activation of adenovirus type 2 early region 4 ORF4 cytoplasmic death function by direct binding to Src kinase domain. J. Biol. Chem. 279, 25905–25915 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Robert, A. et al. Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly. Mol. Biol. Cell 17, 3329–3344 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Amine, A. et al. Novel anti-metastatic action of cidofovir mediated by inhibition of E6/E7, CXCR4 and Rho/ROCK signaling in HPV tumor cells. PLoS ONE 4, e5018 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Moser, T. S., Jones, R. G., Thompson, C. B., Coyne, C. B. & Cherry, S. A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics. PLoS Pathog. 6, e1000954 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ferreira, C. Expression of ubiquitin, actin, and actin-like genes in African swine fever virus infected cells. Virus Res. 44, 11–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Drenckhahn, D. & Wagner, J. Stress fibres in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J. Cell Biol. 102, 1738–1747 (1986).

    Article  CAS  PubMed  Google Scholar 

  149. Wong, A. J., Pollard, T. D. & Herman, I. M. Actin filament stress fibres in vascular endothelial cells in vivo. Science 219, 867–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  150. Halliburton, W. D. On muscle-plasma. J. Physiol. 8, 133–202 (1887).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Straub, F. B. in Studies from the Institute of Medical Chemistry University Szeged Vol. 2 (ed. Szent-Györgyi, A.) 3–15 (Karger, Basel, 1942).

    Google Scholar 

  152. Jakus, M. A. & Hall, C. E. Studies of actin and myosin. J. Biol. Chem. 167, 705–714 (1947).

    CAS  PubMed  Google Scholar 

  153. Ohnishi, T. & Tomoko, O. Extraction of actin- and myosin-like proteins from liver mitochondria. J. Biochem. 52, 230–231 (1962).

    Article  CAS  PubMed  Google Scholar 

  154. Wen, K.-K., Rubenstein, P. A. & DeMali, K. A. Vinculin nucleates actin polymerization and modifies actin filament structure. J. Biol. Chem. 284, 30463–30473 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cudmore, S., Reckmann, I., Griffiths, G. & Way, M. Vaccinia virus: a model system for actin-membrane interactions. J. Cell Sci. 109, 1739–1747 (1996).

    CAS  PubMed  Google Scholar 

  156. Spector, I., Shochet, N. R., Blasberger, D. & Kashman, Y. Latrunculins — novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil. Cytoskeleton 13, 127–144 (1989).

    Article  CAS  PubMed  Google Scholar 

  157. Cooper, J. A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).

    Article  CAS  PubMed  Google Scholar 

  158. Saito, S., Watabe, S., Ozaki, H., Fusetani, N. & Karaki, H. Mycalolide B, a novel actin depolymerizing agent. J. Biol. Chem. 269, 29710–29714 (1994).

    CAS  PubMed  Google Scholar 

  159. Bubb, M. R., Spector, I., Beyer, B. B. & Fosen, K. M. Effects of jasplakinolide on the kinetics of actin polymerization. J. Biol. Chem. 275, 5163–5170 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Limouze, J., Straight, A., Mitchison, T. & Sellers, J. Specificity of blebbistatin, an inhibitor of myosin II. J. Muscle Res. Cell Motil. 25, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Sahai, E. & Olson, M. F. Purification of TAT-C3 exoenzyme. Methods Enzymol. 406, 128–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Ishizaki, T. et al. Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol. Pharmacol. 57, 976–983 (2000).

    CAS  PubMed  Google Scholar 

  163. Klussmann, E., Scott, J., Deacon, S. W. & Peterson, J. R. in Protein-Protein Interactions as New Drug Targets (eds Kass, R. S. & Clancy, C. E.) 431–460 (Springer, Berlin, 2008).

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. Way, W. Bohn, K. Gruenwald and K. DeMali for generously providing the original electron micrographs. They also appreciate the guidance and encouragement from all members of the Enquist laboratory. L.W.E. and O.O.K. are supported by the US National Institutes of Health grants R37 NS033506-16 and R01 NS060699-03. M.P.T. is supported by an American Cancer Society Postdoctoral Research Fellowship (PF-10-057-01-MPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn W. Enquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Lynn W. Enquist's homepage

Glossary

Gelsolin

A calcium-activated protein that severs actin filaments.

Lamellipodia

Wide, thin sheets of membrane extending from the cell body; lamellipodia are often associated with the leading edge of motile cells.

Membrane ruffles

Membrane-enclosed, densely packed actin bundles that increase during cell migration or transformation. Ruffles localize to the leading edge of the lamellipodia, giving these structures a flower-like appearance.

Filopodia

Long, thin membranous extensions of the cell with a core of actin filaments.

Podosomes

Dot-like extracellular matrix attachment sites in motile cells. In transformed cells, podosomes aggregate in the presence of serum to form ring- or crescent-shaped rosettes.

Pseudopodia

Large membranous protrusions that are used to promote the movement of highly motile cells; the name is derived from the Greek for 'false-footed'.

Contact inhibition

The inhibition of uncontrolled cell division by cell–cell contact through mitogen-activated protein kinase signalling. Contact inhibition is deregulated in transformed cell populations.

Adherens junctions

Epithelial cell-to-cell junctions that connect the actin cytoskeleton of one cell to the cytoplasm of the neighbouring cell via cadherins and catenins.

Vinculin

A focal-adhesion plaque protein that is associated with the microfilament ends and talin.

Talin

An actin-binding protein associated with adherens junctions, ruffling membranes and other sites of actin–membrane interaction.

α-actinin

A large family of proteins that crosslink and bundle actin filaments in a calcium-dependent manner in non-muscle cells.

Focal adhesions

Macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix by the association of transmembrane integrins with extracellular proteins such as fibronectin.

Caldesmon

A calmodulin-binding and F-actin-binding protein that regulates the function of actin filaments in a calcium-dependent manner.

Clathrin-mediated endocytosis

The process of enveloping extracellular material and bringing it into the cellular cytoplasm within a membranous vesicle. Invagination of the plasma membrane and stabilization of the vesicle is carried out by triskelions of clathrin that polymerize at the membrane surface to induce curvature.

Macropinocytosis

A specialized form of endocytosis that is used by the cell to obtain soluble materials from the extracellular environment.

Actin treadmilling

The act of moving a specific actin monomer, or its position, along an actin filament using active polymerization and depolymerization processes.

Comet tails

Dense structures of actin filaments that are used to propel objects through the cytoplasm or long distances away from the cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M., Koyuncu, O. & Enquist, L. Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 9, 427–439 (2011). https://doi.org/10.1038/nrmicro2574

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2574

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology