Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncogenic stress sensed by the immune system: role of natural killer cell receptors

Key Points

  • This Review discusses the foremost genetic and immunological studies that probe the role of natural killer (NK) cells and NK cell receptors in tumour surveillance, and link such responses to specific stress pathways that are activated during the process of tumorigenesis. It also discusses the advantages and shortcomings of models used to investigate tumour immunology in vivo.

  • Recent evidence suggests that cell-intrinsic events, occurring at early stages of tumorigenesis, can activate the immune system and lead to the elimination of nascent tumour cells by innate effector cells.

  • The balance of signalling by stimulatory and inhibitory receptors determines whether NK cells are activated. Stimulatory receptors often recognize self ligands that are expressed selectively by transformed, infected or damaged tissues (induced self recognition), whereas inhibitory receptors recognize ligands, such as MHC class I molecules, that are sometimes lost on the same types of diseased cell (missing self recognition).

  • NKG2D, a well-characterized stimulatory receptor that is expressed by NK cells and some T cells, recognizes several self ligands that are often induced on cancer cells. Evidence has accumulated that NKG2D recognition by NK cells and/or T cells underlies protective immune responses against cancer.

  • Cellular stress pathways that are activated in tumour cells as a consequence of the tumorigenesis process induce the expression of NK cell receptor ligands that target protective NK cell responses. These pathways include the DNA damage response, cell senescence programmes and the heat shock response.

  • Multiple stress pathways must be activated to optimally induce the expression of some NK cell receptor ligands because such ligands are regulated at distinct levels of biogenesis by different stress pathways. This requirement presumably helps to ensure that only unhealthy cells are targeted.

  • Tumours often take evasive action to avoid protective NK cell responses. Among the evasion mechanisms are loss of the corresponding ligands, shedding of such ligands in a manner that systemically inhibits NKG2D responses, persistent stimulation of NK cells and/or T cells in a manner that desensitizes them, or induction of suppressive cytokines.

Abstract

A growing body of research is addressing how pathways that are dysregulated during tumorigenesis are linked to innate immune responses, which can contribute to immune surveillance of cancer. Components of the innate immune system that are localized in tissues are thought to eliminate early neoplastic cells, thereby preventing or delaying the establishment of advanced tumours. This Review addresses our current understanding of the mechanisms that detect cellular stresses that are associated with tumorigenesis and that culminate in the recognition and, in some cases, the elimination of the tumour cells by natural killer cells and other lymphocytes that express natural killer cell receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise cancer progression and intrinsic and extrinsic barriers to cancer.
Figure 2: Model of NKG2D-mediated tumour surveillance of prostate adenocarcinoma.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Pardoll, D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  6. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nature Immunol. 9, 503–510 (2008).

    Article  CAS  Google Scholar 

  7. Long, E. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Gasser, S. & Raulet, D. H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Raulet, D. H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nature Immunol. 5, 996–1002 (2004).

    Article  CAS  Google Scholar 

  10. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001). This report provides genetic evidence that some components of the immune system, Rag proteins and STAT1, are important to control fully spontaneous tumours.

    Article  CAS  PubMed  Google Scholar 

  11. Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells. J. Exp. Med. 199, 879–884 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zerafa, N. et al. Cutting edge: TRAIL deficiency accelerates hematological malignancies. J. Immunol. 175, 5586–5590 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Street, S. E., Trapani, J. A., MacGregor, D. & Smyth, M. J. Suppression of lymphoma and epithelial malignancies effected by interferon γ. J. Exp. Med. 196, 129–134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Savage, P. A. et al. Recognition of a ubiquitous self antigen by prostate cancer-infiltrating CD8+ T lymphocytes. Science 319, 215–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Fasso, M. et al. SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: a prostate tumor antigen identified by CTLA-4 blockade. Proc. Natl Acad. Sci. USA 105, 3509–3514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of γδ T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008). This study shows that NKG2D is necessary for tumour surveillance in models of spontaneous cancer in vivo , using mice deficient for NKG2D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nepal, R. M. et al. AID and RAG1 do not contribute to lymphomagenesis in Eμ c-myc transgenic mice. Oncogene 27, 4752–4756 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Unni, A. M., Bondar, T. & Medzhitov, R. Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc. Natl Acad. Sci. USA 105, 1686–1691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swann, J. B. et al. Type I NKT cells suppress tumors in mice caused by p53 loss. Blood 113, 6382–6385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin, Z. & Blankenstein, T. A cancer immunosurveillance controversy. Nature Immunol. 5, 3–4 (2004).

    Article  CAS  Google Scholar 

  25. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Qin, Z., Kim, H. J., Hemme, J. & Blankenstein, T. Inhibition of methylcholanthrene-induced carcinogenesis by an interferon γ receptor-dependent foreign body reaction. J. Exp. Med. 195, 1479–1490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Finnberg, N., Klein-Szanto, A. J. & El-Deiry, W. S. TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J. Clin. Invest. 118, 111–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol. 168, 1356–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crowe, N. Y., Smyth, M. J. & Godfrey, D. I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196, 119–127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205, 2959–2964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002).

    Article  CAS  Google Scholar 

  37. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sivori, S. et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur. J. Immunol. 29, 1656–1666 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Pende, D. et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur. J. Immunol. 31, 1076–1086 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Vitale, M. et al. Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur. J. Immunol. 31, 233–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Pende, D. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. von Lilienfeld-Toal, M. et al. Activated γδ T cells express the natural cytotoxicity receptor natural killer p 44 and show cytotoxic activity against myeloma cells. Clin. Exp. Immunol. 144, 528–533 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Halfteck, G. G. et al. Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J. Immunol. 182, 2221–2230 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Arnon, T. I., Markel, G. & Mandelboim, O. Tumor and viral recognition by natural killer cells receptors. Semin. Cancer Biol. 16, 348–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bloushtain, N. et al. Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J. Immunol. 173, 2392–2401 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Pogge von Strandmann, E. et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27, 965–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Welte, S., Kuttruff, S., Waldhauer, I. & Steinle, A. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nature Immunol. 7, 1334–1342 (2006).

    Article  CAS  Google Scholar 

  49. Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V. & Mathew, P. A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol. Rev. 181, 234–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Schatzle, J. D. et al. Characterization of inhibitory and stimulatory forms of the murine natural killer cell receptor 2B4. Proc. Natl Acad. Sci. USA 96, 3870–3875 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, K. M. et al. 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J. Exp. Med. 199, 1245–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chlewicki, L. K., Velikovsky, C. A., Balakrishnan, V., Mariuzza, R. A. & Kumar, V. Molecular basis of the dual functions of 2B4 (CD244). J. Immunol. 180, 8159–8167 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Vaidya, S. V. et al. Targeted disruption of the 2B4 gene in mice reveals an in vivo role of 2B4 (CD244) in the rejection of B16 melanoma cells. J. Immunol. 174, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573–581 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Tahara-Hanaoka, S. et al. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107, 1491–1496 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Bottino, C. et al. Identification of PVR (CD155) and nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Soriani, A. et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113, 3503–3511 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. El-Sherbiny, Y. M. et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res. 67, 8444–8449 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Carlsten, M. et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 67, 1317–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008). References 34 and 60 used mice deficient for the stimulatory receptor DNAM1 to provide evidence that DNAM1 is involved in tumour surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Saez-Borderias, A. et al. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur. J. Immunol. 36, 3198–3206 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Azimi, N. et al. Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease. Immunogenetics 58, 252–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Groh, V., Smythe, K., Dai, Z. & Spies, T. Fas ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nature Immunol. 7, 755–762 (2006).

    Article  CAS  Google Scholar 

  66. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J. L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 100, 9452–9457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taneja, V. et al. Requirement for CD28 may not be absolute for collagen-induced arthritis: study with HLA-DQ8 transgenic mice. J. Immunol. 174, 1118–1125 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Jamieson, A. M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayashi, T. et al. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 66, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Oppenheim, D. E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nature Immunol. 6, 928–937 (2005).

    Article  CAS  Google Scholar 

  74. Smyth, M. J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiemann, K. et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J. Immunol. 175, 720–729 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Coudert, J. D., Scarpellino, L., Gros, F., Vivier, E. & Held, W. Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways. Blood 111, 3571–3578 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003). References 75–77 show that sustained engagement of NKG2D by its ligands impairs both NKG2D-dependent (references 75,77) and NKG2D-independent (reference 76) NK cell functions.

    Article  CAS  PubMed  Google Scholar 

  78. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007). These authors show that induced expression of p53 in incipient tumours results in cell senescence and immune cell-mediated clearance of the senescent cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl Cancer Inst. 92, 1564–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature Rev. Cancer. 4, 966–977 (2004).

    Article  CAS  Google Scholar 

  84. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). References 84 and 85 show that the DNA damage response is activated early in the tumorigenesis process.

    Article  CAS  PubMed  Google Scholar 

  86. Pusapati, R. V. et al. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc. Proc. Natl Acad. Sci. USA 103, 1446–1451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reimann, M. et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 110, 2996–3004 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9, 1031–1044 (2002). References 86–88 show that overexpression of the proto-oncogene MYC leads to DNA damage and the induction of reactive oxygen species. The consequent ATM–p53 pathway functions as a barrier to tumour progression by activating a pro-apoptotic programme in pre-cancerous cells.

    Article  CAS  PubMed  Google Scholar 

  89. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003).

    Article  CAS  Google Scholar 

  90. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). This report is the first demonstration that constitutive expression of several NKG2D ligands in tumour cell lines depends on the ATM-, ATR- and CHK1-dependent DNA damage response, and that induced DNA damage in cultured fibroblasts induces the expression of NKG2D ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Smyth, M. J. et al. Nature's TRAIL — on a path to cancer immunotherapy. Immunity 18, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Venkataraman, G. M., Suciu, D., Groh, V., Boss, J. M. & Spies, T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J. Immunol. 178, 961–969 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Nice, T. J., Coscoy, L. & Raulet, D. H. Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J. Exp. Med. 206, 287–298 (2009). This study shows that cell surface expression of MULT1 is regulated at the post-transcriptional level by the activation of the heat shock response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nomura, M., Takihara, Y. & Shimada, K. Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: one of the early inducible clones encodes a novel protein sharing several highly homologous regions with a Drosophila polyhomeotic protein. Differentiation 57, 39–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Freemantle, S. J., Spinella, M. J. & Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 22, 7305–7315 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Nausch, N. et al. Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1ɛ. J. Immunol. 176, 7–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Angel, P., Szabowski, A. & Schorpp-Kistner, M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20, 2413–2423 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nature Rev. Immunol. 3, 233–242 (2003).

    Article  CAS  Google Scholar 

  103. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Takada, A. et al. Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D. J. Immunol. 180, 1678–1685 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Whang, M. I., Guerra, N. & Raulet, D. H. Costimulation of dendritic epidermal γδ T cells by a new NKG2D ligand expressed specifically in the skin. J. Immunol. 182, 4557–4564 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Chalupny, N. J., Sutherland, C. L., Lawrence, W. A., Rein-Weston, A. & Cosman, D. ULBP4 is a novel ligand for human NKG2D. Biochem. Biophys. Res. Commun. 305, 129–135 (2003).

    Article  PubMed  CAS  Google Scholar 

  107. Stern-Ginossar, N. et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nature Immunol. 9, 1065–1073 (2008).

    Article  CAS  Google Scholar 

  108. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T- cell activation. Nature 419, 734–748 (2002). This is the first study showing that human ligands for NKG2D can be shed from the surface of tumour cells and subsequently detected in the serum of cancer patients.

    Article  CAS  PubMed  Google Scholar 

  109. Salih, H. R. et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102, 1389–1396 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Waldhauer, I. & Steinle, A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res. 66, 2520–2526 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Jinushi, M. et al. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc. Natl Acad. Sci. USA 105, 1285–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Waldhauer, I. et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 68, 6368–6376 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Boutet, P. et al. Cutting edge: the metalloproteinase ADAM17/TNF-α-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 182, 49–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Eisele, G. et al. TGF-β and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129, 2416–2425 (2006).

    Article  PubMed  Google Scholar 

  115. Kaiser, B. K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Doubrovina, E. S. et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J. Immunol. 171, 6891–6899 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, J. D. et al. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J. Clin. Invest. 114, 560–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, J. D., Atteridge, C. L., Wang, X., Seya, T. & Plymate, S. R. Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin. Cancer Res. 15, 632–640 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bui, J. D., Carayannopoulos, L. N., Lanier, L. L., Yokoyama, W. M. & Schreiber, R. D. IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J. Immunol. 176, 905–913 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Schwinn, N. et al. Interferon-γ down-regulates NKG2D ligand expression and impairs the NKG2D-mediated cytolysis of MHC class I-deficient melanoma by natural killer cells. Int. J. Cancer 124, 1594–1604 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yadav, D., Ngolab, J., Lim, R. S., Krishnamurthy, S. & Bui, J. D. Cutting edge: down-regulation of MHC class I-related chain A on tumor cells by IFN-γ-induced microRNA. J. Immunol. 182, 39–43 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Roberts, A. I. et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J. Immunol. 167, 5527–5530 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Horng, T., Bezbradica, J. S. & Medzhitov, R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nature Immunol. 8, 1345–1352 (2007).

    Article  CAS  Google Scholar 

  124. Lee, J. C., Lee, K. M., Kim, D. W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J. Immunol. 182, 240–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Krockenberger, M. et al. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J. Immunol. 180, 7338–7348 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Coudert, J. D. et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106, 1711–1717 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Cerboni, C., Ardolino, M., Santoni, A. & Zingoni, A. Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood 113, 2955–2964 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Diermayr, S. et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111, 1428–1436 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Poggi, A. et al. Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 23, 641–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Zhou, H. et al. DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc. Natl Acad. Sci. USA 102, 10846–10851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nature Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  134. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  135. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Carayannopoulos, L. N., Naidenko, O. V., Fremont, D. H. & Yokoyama, W. M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Diefenbach, A., Hsia, J. K., Hsiung, M. Y. & Raulet, D. H. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur. J. Immunol. 33, 381–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Friese, M. A. et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res. 63, 8996–9006 (2003).

    CAS  PubMed  Google Scholar 

  140. Unni, A. M., Bondar, T. & Medzhitov, R. Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc. Natl Acad. Sci. USA 105, 1686–1691 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lanier, L. L. Evolutionary struggles between NK cells and viruses. Nature Rev. Immunol. 8, 259–268 (2008).

    Article  CAS  Google Scholar 

  142. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank laboratory colleagues for advice, collaboration and ideas. The research in the authors' laboratory was supported by grants from the National Institutes of Health and a postdoctoral fellowship from the Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Raulet.

Related links

Related links

FURTHER INFORMATION

David H. Raulet's homepage:

Glossary

p53

A tumour suppressor that is mutated in 50% or more of all human cancers. p53 is a transcription factor that is activated by DNA damage, anoxia, expression of certain oncogenes and several other stress stimuli. Target genes activated by p53 regulate cell cycle arrest, apoptosis, cell senescence and DNA repair.

Kaposi's sarcoma

A tumour of endothelial cell origin that is found most frequently in immunosuppressed patients, particularly individuals with HIV. Kaposi's sarcoma-associated herpesvirus has been implicated as a cofactor in the development of Kaposi's sarcoma.

Recombination-activating gene 2

(Rag2). A gene encoding a protein that mediates V(D)J recombination in preB cells and thymocytes, which is necessary for the production of B and T cell receptors, and thus for the development of B and T cells.

Perforin

A component of the cytolytic granules of cytotoxic T cells and natural killer cells that participates in the permeabilization of plasma membranes, allowing granzymes and other cytotoxic components to enter target cells.

Large T antigen

A multifunctional protein product of the simian virus 40 (SV40) early region that is necessary to establish a permissive host cell environment for viral replication by interactions with host proteins. Large T antigen binds and functionally inactivates the tumour suppressor proteins retinoblastoma and p53.

γδT cell

A T cell that expresses a T cell receptor consisting of a γ-chain and a δ-chain. γδ T cells are present in several epithelial locations as intraepithelial lymphocytes (IELs) and in lymphoid organs. Although the functions of γδ T cells (or IELs) are still mostly unknown, it has been suggested that mucosal γδ T cells mediate innate-type mucosal immune responses, and epidermal γδ T cells in mice have been implicated in tumour surveillance and wound repair.

Natural killer T (NKT) cell

A subpopulation of T cells that expresses both NK cell and T cell markers. In the C57BL/6 mouse strain, NKT cells express the NK1.1 (NKRP1C) molecule and the T cell receptor (TCR). Some NKT cells recognize CD1d-associated lipid antigens and express a restricted repertoire of TCRs (invariant NKT cells). After TCR stimulation of naive cells, NKT cells rapidly produce interleukin-4 and interferon-γ.

NK group 2, member D

(NKG2D). A lectin-type activating receptor encoded by killer cell lectin-like receptor subfamily K, member 1 (Klrk1) located in the natural killer cell gene complex. NKG2D associates with signalling adaptor molecules, including DAP10 (in both humans and mice) and DAP12 (in mice but not humans). DAP10 activates phosphoinositide 3-kinase, and its signalling mechanism resembles that of co-stimulatory receptors, such as CD28. By contrast, DAP12 activates spleen tyrosine kinase, and its signalling resembles that of B and T cell receptors.

Unfolded protein response

A response that increases the ability of the endoplasmic reticulum to fold and translocate proteins, decreases the synthesis of proteins and causes cell cycle arrest and apoptosis.

Ataxia telangiectasia

(also known as Louis–Bar syndrome). A familial recessive disease that is characterized by progressive cerebellar ataxia, oculocutaneous telangiectases and susceptibility to pulmonary infections. It is caused by germline mutations in ataxia telangiectasia mutated (ATM), which encodes a sensor that activates the DNA damage response.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raulet, D., Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9, 568–580 (2009). https://doi.org/10.1038/nri2604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2604

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing