Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer

Abstract

Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic opportunities created by adaptive responses.
Fig. 2: Adaptive response programmes in cancer cells and in the tumour ecosystem.
Fig. 3: Strategies to induce cancer cell death.
Fig. 4: Potential approach to deliver personalized combination therapies in real time.

Similar content being viewed by others

References

  1. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Ganesh, K. & Massague, J. Targeting metastatic cancer. Nat. Med. 27, 34–44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le Magnen, C., Shen, M. M. & Abate-Shen, C. Lineage plasticity in cancer progression and treatment. Annu. Rev. Cancer Biol. 2, 271–289 (2018).

    Article  PubMed  Google Scholar 

  4. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hotamisligil, G. S. & Davis, R. J. Cell signaling and stress responses. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a006072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kreuzaler, P., Panina, Y., Segal, J. & Yuneva, M. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol. Metab. 33, 83–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, X. & Zhang, Z. Understanding the genetic mechanisms of cancer drug resistance using genomic approaches. Trends Genet. 32, 127–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Salgia, R. & Kulkarni, P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer 4, 110–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer 19, 377–391 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Chern, Y. J. & Tai, I. T. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol. Med. 17, 842–863 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fendt, S. M., Frezza, C. & Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10, 1797–1807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Marzagalli, M., Fontana, F., Raimondi, M. & Limonta, P. Cancer stem cells-key players in tumor relapse. Cancers (Basel) https://doi.org/10.3390/cancers13030376 (2021).

    Article  Google Scholar 

  16. Shaked, Y. The pro-tumorigenic host response to cancer therapies. Nat. Rev. Cancer 19, 667–685 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Assaraf, Y. G. et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug. Resist. Updat. 46, 100645 (2019).

    Article  PubMed  Google Scholar 

  19. Bukowski, K., Kciuk, M. & Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Y., Wang, Z., Ajani, J. A. & Song, S. Drug resistance and cancer stem cells. Cell Commun. Signal. 19, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ward, R. A. et al. Challenges and opportunities in cancer drug resistance. Chem. Rev. 121, 3297–3351 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Mao, P. et al. Acquired FGFR and FGF alterations confer resistance to estrogen receptor (ER) targeted therapy in ER+ metastatic breast cancer. Clin. Cancer Res. 26, 5974–5989 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Nayar, U. et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 51, 207–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Priedigkeit, N. et al. Acquired mutations and transcriptional remodeling in long-term estrogen-deprived locoregional breast cancer recurrences. Breast Cancer Res. 23, 1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Priedigkeit, N. et al. Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA Oncol. 3, 666–671 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waks, A. G. et al. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Ann. Oncol. 31, 590–598 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Wander, S. A. et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 10, 1174–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hughes, D. & Andersson, D. I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet. 16, 459–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Chandarlapaty, S. Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov. 2, 311–319 (2012). This study shows that AKT inhibition leads to the induction of RTKs through the relief of a feedback loop, reducing the antitumour activity of AKT inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rozengurt, E., Soares, H. P. & Sinnet-Smith, J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol. Cancer Ther. 13, 2477–2488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chakrabarty, A., Sanchez, V., Kuba, M. G., Rinehart, C. & Arteaga, C. L. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc. Natl Acad. Sci. USA 109, 2718–2723 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Pawson, T. & Scott, J. D. Protein phosphorylation in signaling — 50 years and counting. Trends Biochem. Sci. 30, 286–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gerosa, L. et al. Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. Cell Syst. 11, 478–494 e479 (2020). This study shows the integration of computational modelling and biosensor-based live cell imaging to elucidate how cancer cell–cancer cell paracrine signalling drives the emergence of drug-tolerant cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller, M. A. et al. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 6, 382–399 (2016). This study demonstrates that extracellular proteomic adaptation can lead to signalling bypass and drug resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper, J. & Giancotti, F. G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35, 347–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Britschgi, A. et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 22, 796–811 (2012). This study shows that a JAK2/STAT5-driven positive feedback loop reduces the efficacy of PI3K/mTOR inhibition.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, V. E. et al. Adaptive resistance to dual BRAF/MEK inhibition in BRAF-driven tumors through autocrine FGFR pathway activation. Clin. Cancer Res. 25, 7202–7217 (2019). This research demonstrates that activation of the FGFR pathway represents a bypass mechanism to dual BRAF–MEK inhibition, leading to adaptive resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ley, R., Balmanno, K., Hadfield, K., Weston, C. & Cook, S. J. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J. Biol. Chem. 278, 18811–18816 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Harada, H. & Grant, S. Targeting the regulatory machinery of BIM for cancer therapy. Crit. Rev. Eukaryot. Gene Expr. 22, 117–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmelzle, T. et al. Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc. Natl Acad. Sci. USA 104, 3787–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sherrill, K. W., Byrd, M. P., Van Eden, M. E. & Lloyd, R. E. BCL-2 translation is mediated via internal ribosome entry during cell stress. J. Biol. Chem. 279, 29066–29074 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hartman, M. L., Talar, B., Gajos-Michniewicz, A. & Czyz, M. MCL-1, BCL-XL and MITF are diversely employed in adaptive response of melanoma cells to changes in microenvironment. PLoS ONE 10, e0128796 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lans, H., Hoeijmakers, J. H. J., Vermeulen, W. & Marteijn, J. A. The DNA damage response to transcription stress. Nat. Rev. Mol. Cell Biol. 20, 766–784 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, Y., Li, Y. & Lu, X. Regulators in the DNA damage response. Arch. Biochem. Biophys. 594, 18–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Petsalaki, E. & Zachos, G. DNA damage response proteins regulating mitotic cell division: double agents preserving genome stability. FEBS J. 287, 1700–1721 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Boutelle, A. M. & Attardi, L. D. p53 and tumor suppression: it takes a network. Trends Cell Biol. 31, 298–310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, C. et al. Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aal5148 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun, C. et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell 33, 401–416 e408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Kalimutho, M. et al. Enhanced dependency of KRAS-mutant colorectal cancer cells on RAD51-dependent homologous recombination repair identified from genetic interactions in Saccharomyces cerevisiae. Mol. Oncol. 11, 470–490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baluapuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat. Rev. Mol. Cell Biol. 21, 255–267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yi, J. et al. MYC status as a determinant of synergistic response to olaparib and palbociclib in ovarian cancer. EBioMedicine 43, 225–237 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Baillie, K. E. & Stirling, P. C. Beyond kinases: targeting replication stress proteins in cancer therapy. Trends Cancer https://doi.org/10.1016/j.trecan.2020.10.010 (2020).

    Article  PubMed  Google Scholar 

  62. Juvekar, A. et al. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion. Proc. Natl Acad. Sci. USA 113, E4338–E4347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin, J. C. et al. Exploiting replication stress as a novel therapeutic intervention. Mol. Cancer Res. 19, 192–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, H., Swami, U., Preet, R. & Zhang, J. Harnessing DNA replication stress for novel cancer therapy. Genes (Basel) https://doi.org/10.3390/genes11090990 (2020).

    Article  PubMed Central  Google Scholar 

  65. Rose, M., Burgess, J. T., O’Byrne, K., Richard, D. J. & Bolderson, E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol. 8, 564601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Toledo, L., Neelsen, K. J. & Lukas, J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol. Cell 66, 735–749 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019). This research demonstrates that PARPi promote the accumulation of cytosolic DNA fragments, activating the cGAS–STING pathway, inducing antitumour immunity.

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Z. et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci. Rep. 9, 1853 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kaur, J. & Bhattacharyya, S. Cancer stem cells: metabolic characterization for targeted cancer therapy. Front. Oncol. 11, 756888 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zheng, J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol. Lett. 4, 1151–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koyasu, S., Kobayashi, M., Goto, Y., Hiraoka, M. & Harada, H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 109, 560–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shaw, R. J. Glucose metabolism and cancer. Curr. Opin. Cell Biol. 18, 598–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Park, J. H., Pyun, W. Y. & Park, H. W. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells https://doi.org/10.3390/cells9102308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haq, R., Fisher, D. E. & Widlund, H. R. Molecular pathways: BRAF induces bioenergetic adaptation by attenuating oxidative phosphorylation. Clin. Cancer Res. 20, 2257–2263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302–315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagasawa, I., Kunimasa, K., Tsukahara, S. & Tomida, A. BRAF-mutated cells activate GCN2-mediated integrated stress response as a cytoprotective mechanism in response to vemurafenib. Biochem. Biophys. Res. Commun. 482, 1491–1497 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the hallmarks of cancer. Cancer Cell 34, 21–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi, N. et al. Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell 33, 985–1003 e1007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schonthal, A. H. Endoplasmic reticulum stress and autophagy as targets for cancer therapy. Cancer Lett. 275, 163–169 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Eritja, N. et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 13, 608–624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Makhov, P. et al. The convergent roles of NF-kappaB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 9, 374 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Adomavicius, T. et al. The structural basis of translational control by eIF2 phosphorylation. Nat. Commun. 10, 2136 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pavitt, G. D., Ramaiah, K. V., Kimball, S. R. & Hinnebusch, A. G. eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. Genes Dev. 12, 514–526 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian, X. et al. Targeting the integrated stress response in cancer therapy. Front. Pharmacol. 12, 747837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gaggianesi, M. et al. Messing up the cancer stem cell chemoresistance mechanisms supported by tumor microenvironment. Front. Oncol. 11, 702642 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, T. et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res. 21, 1652–1664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hipp, M. M. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111, 5610–5620 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Verma, V. et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Petroni, G., Buque, A., Zitvogel, L., Kroemer, G. & Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 39, 310–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Kersh, A. E. et al. Targeted therapies: immunologic effects and potential applications outside of cancer. J. Clin. Pharmacol. 58, 7–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Lampert, E. J. et al. Combination of PARP inhibitor olaparib, and PD-L1 inhibitor durvalumab, in recurrent ovarian cancer: a proof-of-concept phase II study. Clin. Cancer Res. 26, 4268–4279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Labrie, M. et al. Multiomics analysis of serial PARP inhibitor treated metastatic TNBC inform on rational combination therapies. NPJ Precis. Oncol. 5, 92 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garvey, C. M. et al. Anti-EGFR therapy induces EGF secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance. Cancers (Basel) https://doi.org/10.3390/cancers12061393 (2020).

    Article  Google Scholar 

  104. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zervantonakis, I. K. et al. Fibroblast-tumor cell signaling limits HER2 kinase therapy response via activation of MTOR and antiapoptotic pathways. Proc. Natl Acad. Sci. USA 117, 16500–16508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lotti, F. et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med. 210, 2851–2872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ohuchida, K. et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 64, 3215–3222 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27, 574–588 (2015). This study shows the utility of intravital microscopy to dissect the interplay between cancer cells and stromal cells in tumour ecosystems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marusyk, A. et al. Spatial proximity to fibroblasts impacts molecular features and therapeutic sensitivity of breast cancer cells influencing clinical outcomes. Cancer Res. 76, 6495–6506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zoeller, J. J., Bronson, R. T., Selfors, L. M., Mills, G. B. & Brugge, J. S. Niche-localized tumor cells are protected from HER2-targeted therapy via upregulation of an anti-apoptotic program in vivo. NPJ Breast Cancer 3, 18 (2017). This research demonstrates that different microenvironmental niches can influence the response of cancer cells to HER2 inhibition.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Benavente, S., Sanchez-Garcia, A., Naches, S., Lleonart, M. E. & Lorente, J. Therapy-induced modulation of the tumor microenvironment: new opportunities for cancer therapies. Front. Oncol. 10, 582884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Costa, C. et al. Measurement of PIP3 levels reveals an unexpected role for p110beta in early adaptive responses to p110alpha-specific inhibitors in luminal breast cancer. Cancer Cell 27, 97–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. O’Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006). This research shows the existence of a feedback loop activating RTK signalling in the presence of an mTOR inhibitor, attenuating therapeutic effects.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Schwill, M. et al. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci. Signal. https://doi.org/10.1126/scisignal.aau2875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brown, W. S. et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by co-targeting mTORC1/2 complexes in pancreatic cancer. Cell Rep. Med. 1, 100131 (2020). This study shows that inhibition of mTOR complex 1/2 results in a compensatory increase in ERK activation, which can be interdicted through dual inhibition of MEK and mTOR complex 1/2, resulting in synergistic activity.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shi, H. et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 4, 69–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Hanker, A. B., Kaklamani, V. & Arteaga, C. L. Challenges for the clinical development of pi3k inhibitors: strategies to improve their impact in solid tumors. Cancer Discov. 9, 482–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Anderson, G. R. et al. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Sci. Transl. Med. 8, 369ra175 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Iavarone, C. et al. Combined MEK and BCL-2/XL inhibition is effective in high-grade serous ovarian cancer patient-derived xenograft models and BIM levels are predictive of responsiveness. Mol. Cancer Ther. 18, 642–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Montero, J. et al. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat. Commun. 10, 5157 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zoeller, J. J. et al. Navitoclax enhances the effectiveness of EGFR-targeted antibody-drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res. 22, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Menon, D. R. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4545 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Emran, A. A. et al. Distinct histone modifications denote early stress-induced drug tolerance in cancer. Oncotarget 9, 8206–8222 (2018).

    Article  PubMed  Google Scholar 

  126. Stuhlmiller, T. J. et al. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 11, 390–404 (2015). This study demonstrates that inhibition of chromatin readers prevents the kinome reprogramming during the adaptive responses to the HER2 inhibitor lapatinib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rusan, M. et al. Suppression of adaptive responses to targeted cancer therapy by transcriptional repression. Cancer Discov. 8, 59–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Subramanian, S., Bates, S. E., Wright, J. J., Espinoza-Delgado, I. & Piekarz, R. L. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals 3, 2751–2767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Labrie, M. et al. Adaptive responses in a PARP inhibitor window of opportunity trial illustrate limited functional interlesional heterogeneity and potential combination therapy options. Oncotarget 10, 3533–3546 (2019). This study demonstrates that an adaptive response is detected early in patients with ovarian cancer treated with a PARPi and that the response is conserved across multiple lesions from the same patient.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lloyd, R. L. et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 39, 4869–4883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes. Dev. 31, 318–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Y. et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G2 checkpoint abrogator. Cancer Res. 61, 8211–8217 (2001).

    CAS  PubMed  Google Scholar 

  133. Sun, C., Fang, Y., Labrie, M., Li, X. & Mills, G. B. Systems approach to rational combination therapy: PARP inhibitors. Biochem. Soc. Trans. 48, 1101–1108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ewald, B., Sampath, D. & Plunkett, W. Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27, 6522–6537 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Fang, Y. et al. Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy. Cancer Cell 35, 851–867 e857 (2019). This research shows that sequential therapy with PARPi and WEE1 inhibitors has synergistic activity, while minimizing toxic effects. It also illustrates the concept of therapeutic opportunities based on the pre-existing RS in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aarts, M. et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2, 524–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Abildgaard, C. & Guldberg, P. Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol. Med. 21, 164–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Kluza, J. et al. Inactivation of the HIF-1alpha/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res. 72, 5035–5047 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Sarmiento-Salinas, F. L. et al. Reactive oxygen species: role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 284, 119942 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Aggarwal, V. et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules https://doi.org/10.3390/biom9110735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tarrado-Castellarnau, M. et al. De novo MYC addiction as an adaptive response of cancer cells to CDK4/6 inhibition. Mol. Syst. Biol. 13, 940 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Dru. Discov. 18, 295–317 (2019).

    Article  CAS  Google Scholar 

  143. Eluard, B., Thieblemont, C. & Baud, V. NF-kappaB in the new era of cancer therapy. Trends Cancer 6, 677–687 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Jaganjac, M., Milkovic, L., Sunjic, S. B. & Zarkovic, N. The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxid. (Basel) https://doi.org/10.3390/antiox9111151 (2020).

    Article  Google Scholar 

  145. Wang, H., Zhang, S., Song, L., Qu, M. & Zou, Z. Synergistic lethality between PARP-trapping and alantolactone-induced oxidative DNA damage in homologous recombination-proficient cancer cells. Oncogene 39, 2905–2920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Buisson, R., Boisvert, J. L., Benes, C. H. & Zou, L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol. Cell 59, 1011–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, H. et al. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage. Free Radic. Biol. Med. 91, 264–274 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Ubhi, T. & Brown, G. W. Exploiting DNA replication stress for cancer treatment. Cancer Res. 79, 1730–1739 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Spencer, S. L. & Sorger, P. K. Measuring and modeling apoptosis in single cells. Cell 144, 926–939 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jiang, Y. et al. PARP inhibitors synergize with gemcitabine by potentiating DNA damage in non-small-cell lung cancer. Int. J. Cancer 144, 1092–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Lee, H. J. et al. Combining PARP-1 inhibition and radiation in Ewing sarcoma results in lethal DNA damage. Mol. Cancer Ther. 12, 2591–2600 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Green, D. R. & Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a006080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang, Y. C. et al. Targeting endoplasmic reticulum stress and Akt with OSU-03012 and gefitinib or erlotinib to overcome resistance to epidermal growth factor receptor inhibitors. Cancer Res. 68, 2820–2830 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, Z. et al. Niraparib activates interferon signaling and synergizes therapeutically with anti-PD-1 antibody. Sci. Rep. 9, 1853 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Pantelidou, C. et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 9, 722–737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang, B. et al. MEK inhibition remodels the immune landscape of mutant KRAS tumors to overcome resistance to PARP and immune checkpoint inhibitors. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-2370 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Chauhan, V. P. et al. Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proc. Natl Acad. Sci. USA 116, 10674–10680 (2019). This study demonstrates that angiotensin receptor blockers can reprogramme CAFs to promote T cell activity and improve immunotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Murphy, J. E. et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1020–1027 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Alishekevitz, D. et al. Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17, 1344–1356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yap, T. A. et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 11, 1368–1397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tang, C. et al. Synergy between VEGF/VEGFR inhibitors and chemotherapy agents in the phase I clinic. Clin. Cancer Res. 20, 5956–5963 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Gilad, Y., Gellerman, G., Lonard, D. M. & O’Malley, B. W. Drug combination in cancer treatment-from cocktails to conjugated combinations. Cancers (Basel) https://doi.org/10.3390/cancers13040669 (2021).

    Article  Google Scholar 

  168. Kircher, M. F., Hricak, H. & Larson, S. M. Molecular imaging for personalized cancer care. Mol. Oncol. 6, 182–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mankoff, D. A., Farwell, M. D., Clark, A. S. & Pryma, D. A. Making molecular imaging a clinical tool for precision oncology: a review. JAMA Oncol. 3, 695–701 (2017).

    Article  PubMed  Google Scholar 

  170. de Vries, E. G. E. et al. Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat. Rev. Clin. Oncol. 16, 241–255 (2019).

    Article  PubMed  Google Scholar 

  171. Kilgour, E., Rothwell, D. G., Brady, G. & Dive, C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 37, 485–495 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Rodriguez, J. et al. When tissue is an issue the liquid biopsy is nonissue: a review. Oncol. Ther. 9, 89–110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Liu, J. et al. Circulating tumor cells (CTCs): a unique model of cancer metastases and non-invasive biomarkers of therapeutic response. Front. Genet. 12, 734595 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sanjabi, S. & Lear, S. New cytometry tools for immune monitoring during cancer immunotherapy. Cytom. B Clin. Cytom. 100, 10–18 (2021).

    Article  CAS  Google Scholar 

  175. Hernandez, C. et al. Systemic blood immune cell populations as biomarkers for the outcome of immune checkpoint inhibitor therapies. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21072411 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Reduzzi, C. et al. The curious phenomenon of dual-positive circulating cells: longtime overlooked tumor cells. Semin. Cancer Biol. 60, 344–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Martinez-Dominguez, M. V. et al. Current technologies for RNA-directed liquid diagnostics. Cancers (Basel) https://doi.org/10.3390/cancers13205060 (2021).

    Article  Google Scholar 

  178. Martellucci, S. et al. Extracellular vesicles: new endogenous shuttles for miRNAs in cancer diagnosis and therapy? Int. J. Mol. Sci. https://doi.org/10.3390/ijms21186486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Valencia, K. & Montuenga, L. M. Exosomes in liquid biopsy: the nanometric world in the pursuit of precision oncology. Cancers (Basel) https://doi.org/10.3390/cancers13092147 (2021).

    Article  Google Scholar 

  180. Di Martino, M. T. et al. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers (Basel) https://doi.org/10.3390/cancers13071587 (2021).

    Article  PubMed Central  Google Scholar 

  181. Gheibi-Hayat, S. M. & Jamialahmadi, K. Antisense oligonucleotide (AS-ODN) technology: principle, mechanism and challenges. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2028 (2020).

    Article  PubMed  Google Scholar 

  182. Romano, G., Acunzo, M. & Nana-Sinkam, P. microRNAs as novel therapeutics in cancer. Cancers (Basel) https://doi.org/10.3390/cancers13071526 (2021).

    Article  PubMed Central  Google Scholar 

  183. Belete, T. M. The current status of gene therapy for the treatment of cancer. Biologics 15, 67–77 (2021).

    PubMed  PubMed Central  Google Scholar 

  184. Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Mitri, Z. I. et al. Implementing a comprehensive translational oncology platform: from molecular testing to actionability. J. Transl. Med. 16, 358 (2018). This study shows the feasibility of real-time cancer tissue acquisition and analysis within a translational oncology platform that aims at providing biomarker-driven precision therapy to patients with cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Janiszewska, M. et al. The impact of tumor epithelial and microenvironmental heterogeneity on treatment responses in HER2+ breast cancer. JCI Insight https://doi.org/10.1172/jci.insight.147617 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Roper, N. et al. Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer. Cell Rep. Med. https://doi.org/10.1016/j.xcrm.2020.100007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Marin-Bejar, O. et al. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 39, 1135–1149 e1138 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Guruprasad, P., Lee, Y. G., Kim, K. H. & Ruella, M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J. Exp. Med. https://doi.org/10.1084/jem.20201574 (2021).

    Article  PubMed  Google Scholar 

  191. Lim, B., Lin, Y. & Navin, N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell 37, 456–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Paul, I., White, C., Turcinovic, I. & Emili, A. Imaging the future: the emerging era of single-cell spatial proteomics. FEBS J. https://doi.org/10.1111/febs.15685 (2020).

    Article  Google Scholar 

  193. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Wargo, J. A., Reuben, A., Cooper, Z. A., Oh, K. S. & Sullivan, R. J. Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Semin. Oncol. 42, 601–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Miller, M. A. & Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer 17, 399–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Salvador-Barbero, B. et al. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma. Cancer Cell 38, 584 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. No Authors Listed. Capivasertib active against AKT1-mutated cancers. Cancer Discov. 9, OF7 (2019).

    Google Scholar 

  198. Gnann, C., Cesnik, A. J. & Lundberg, E. Illuminating non-genetic cellular heterogeneity with imaging-based spatial proteomics. Trends Cancer 7, 278–282 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Morgan, D., Jost, T. A., De Santiago, C. & Brock, A. Applications of high-resolution clone tracking technologies in cancer. Curr. Opin. Biomed. Eng. https://doi.org/10.1016/j.cobme.2021.100317 (2021).

    Article  PubMed  Google Scholar 

  203. Saavedra-Garcia, P. et al. Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2018229118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Zhao, W. et al. Large-scale characterization of drug responses of clinically relevant proteins in cancer cell lines. Cancer Cell 38, 829–843 e824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Avolio, R., Matassa, D. S., Criscuolo, D., Landriscina, M. & Esposito, F. Modulation of mitochondrial metabolic reprogramming and oxidative stress to overcome chemoresistance in cancer. Biomolecules https://doi.org/10.3390/biom10010135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Loponte, S., Lovisa, S., Deem, A. K., Carugo, A. & Viale, A. The many facets of tumor heterogeneity: is metabolism lagging behind? Cancers (Basel) https://doi.org/10.3390/cancers11101574 (2019).

    Article  Google Scholar 

  207. Singh, B., Patwardhan, R. S., Jayakumar, S., Sharma, D. & Sandur, S. K. Oxidative stress associated metabolic adaptations regulate radioresistance in human lung cancer cells. J. Photochem. Photobiol. B 213, 112080 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Tu, W., Wang, H., Li, S., Liu, Q. & Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10, 637–651 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ju, H. Q. et al. Mechanisms of overcoming intrinsic resistance to gemcitabine in pancreatic ductal adenocarcinoma through the redox modulation. Mol. Cancer Ther. 14, 788–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Xu, J., Patel, N. H. & Gewirtz, D. A. Triangular relationship between p53, autophagy, and chemotherapy resistance. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21238991 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Deng, D. & Shah, K. TRAIL of hope meeting resistance in cancer. Trends Cancer 6, 989–1001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Stohr, D., Jeltsch, A. & Rehm, M. TRAIL receptor signaling: from the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. Int. Rev. Cell Mol. Biol. 351, 57–99 (2020).

    Article  PubMed  CAS  Google Scholar 

  213. Hatok, J. & Racay, P. Bcl-2 family proteins: master regulators of cell survival. Biomol. Concepts 7, 259–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Lemmer, I. L., Willemsen, N., Hilal, N. & Bartelt, A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol. Metab. 47, 101169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Akman, M. et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. J. Exp. Clin. Cancer Res. 40, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Samanta, D. & Semenza, G. L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim. Biophys. Acta Rev. Cancer 1870, 15–22 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Baillie, K. E. & Stirling, P. C. Beyond kinases: targeting replication stress proteins in cancer therapy. Trends Cancer 7, 430–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Gmeiner, W. H. Entrapment of DNA topoisomerase-DNA complexes by nucleotide/nucleoside analogs. Cancer Drug. Resist. 2, 994–1001 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Pilie, P. G., Tang, C., Mills, G. B. & Yap, T. A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rebe, C. & Ghiringhelli, F. STAT3, a master regulator of anti-tumor immune response. Cancers (Basel) https://doi.org/10.3390/cancers11091280 (2019).

    Article  Google Scholar 

  222. Vanpouille-Box, C. et al. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Alcala, A. M. & Flaherty, K. T. BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin. Cancer Res. 18, 33–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Zoeller, J. J. et al. Clinical evaluation of BCL-2/XL levels pre- and post- HER2-targeted therapy. PLoS ONE 16, e0251163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bosch, A. et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci. Transl. Med. 7, 283ra251 (2015).

    Article  CAS  Google Scholar 

  227. Leone, A. et al. Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free. Radic. Biol. Med. 89, 287–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Boucher, Y. et al. Bevacizumab improves tumor infiltration of mature dendritic cells and effector T-cells in triple-negative breast cancer patients. NPJ Precis. Oncol. 5, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zervantonakis, I. K. et al. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response. Nat. Commun. 8, 365 (2017). This study describes a systems biology approach to rationally develop combination therapies that target common adaptive responses across a panel of patient-derived xenografts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Leonard, B. et al. BET inhibition overcomes receptor tyrosine kinase-mediated cetuximab resistance in HNSCC. Cancer Res. 78, 4331–4343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zawistowski, J. S. et al. Enhancer remodeling during adaptive bypass to MEK inhibition is attenuated by pharmacologic targeting of the P-TEFb complex. Cancer Discov. 7, 302–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Nath, A. & Bild, A. H. Leveraging single-cell approaches in cancer precision medicine. Trends Cancer 7, 359–372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Califano, A. & Alvarez, M. J. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat. Rev. Cancer 17, 116–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12, e1001789 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769 e1722 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Howard, S. C., Jones, D. P. & Pui, C. H. The tumor lysis syndrome. N. Engl. J. Med. 364, 1844–1854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Infante, J. R. et al. A phase I dose-escalation study of selumetinib in combination with erlotinib or temsirolimus in patients with advanced solid tumors. Invest. N. Drugs 35, 576–588 (2017).

    Article  CAS  Google Scholar 

  238. Senapati, S., Mahanta, A. K., Kumar, S. & Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal. Transduct. Target. Ther. 3, 7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the US National Institutes of Health (P50 CA240243 Dana-Farber/Harvard Cancer Center Ovarian Cancer SPORE to J.S.B., U01 CA253472 to G.B.M. and R00 CA222554 to I.K.Z.), the Breast Cancer Research Foundation (J.S.B. and G.B.M.) and the Elsa Pardee Foundation (I.K.Z.) and a gift from the Sheldon and Miriam Adelson Medical Research Foundation (J.S.B. and G.B.M.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Review.

Corresponding author

Correspondence to Ioannis K. Zervantonakis.

Ethics declarations

Competing interests

M.L., I.K.Z. and J.S.B. have no conflicts of interest relating to the topics in this Review. G.B.M. has acted as a consultant or scientific advisory board member for AstraZeneca, Ellipses Pharma, ImmunoMET, Infinity, Ionis, Lilly, Nanostring, PDX Pharmaceuticals, Signalchem Lifesciences, Tarveda, Turbine and Zentalis Pharmaceuticals, and holds stock or stock options for Catena Pharmaceuticals, ImmunoMet, SignalChem, Spindletop Ventures, Tarveda and Turbine. G.B.M. has licensed technology including HRD assay (Myriad Genetics) and DSP (Nanostring).

Peer review

Peer review information

Nature Reviews Cancer thanks M. Herlyn, who co-reviewed with H. Li, R. Lo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrie, M., Brugge, J.S., Mills, G.B. et al. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 22, 323–339 (2022). https://doi.org/10.1038/s41568-022-00454-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00454-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing