Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cancer-immune dialogue in the context of stress

Abstract

Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of stress on cancer.
Fig. 2: The effect of glucocorticoids on the immune system and anticancer immune responses.
Fig. 3: The effect of catecholamines on the immune system and anticancer immune responses.
Fig. 4: The effect of other SAIMs on the immune system and anticancer immune responses.

Similar content being viewed by others

References

  1. Braslow, J. T. & Marder, S. R. History of psychopharmacology. Annu. Rev. Clin. Psychol. 15, 25–50 (2019).

    Article  PubMed  Google Scholar 

  2. Cruz-Pereira, J. S. et al. Depression’s unholy trinity: dysregulated stress, immunity, and the microbiome. Annu. Rev. Psychol. 71, 49–78 (2020).

    Article  PubMed  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). This review elegantly summarizes current knowledge about the links among depression pathogenesis, immunity and the microbiome, as well as possible therapeutic interventions.

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Veiga-Fernandes, H. & Artis, D. Neuronal-immune system cross-talk in homeostasis. Science 359, 1465–1466 (2018).

    Article  PubMed  Google Scholar 

  6. Godinho-Silva, C., Cardoso, F. & Veiga-Fernandes, H. Neuro-immune cell units: a new paradigm in physiology. Annu. Rev. Immunol. 37, 19–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021). This study discovers that lymph node-innervating sensory neurons can interact with several predicted cell types and change their transcriptome, and the unexpected sensory neuro-immune circuit exhibits the capacity to monitor the inflammatory state in the lymph node.

    Article  CAS  PubMed  Google Scholar 

  8. Kabata, H. & Artis, D. Neuro-immune crosstalk and allergic inflammation. J. Clin. Invest. 130, 1475–1482 (2019).

    Article  Google Scholar 

  9. Chen, C.-S., Barnoud, C. & Scheiermann, C. Peripheral neurotransmitters in the immune system. Curr. Opin. Physiol. 19, 73–79 (2021).

    Article  Google Scholar 

  10. Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, eaar3932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guyot, M. et al. Apical splenic nerve electrical stimulation discloses an anti-inflammatory pathway relying on adrenergic and nicotinic receptors in myeloid cells. Brain Behav. Immun. 80, 238–246 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Al-Shalan, H. A. M., Hu, D., Nicholls, P. K., Greene, W. K. & Ma, B. Immunofluorescent characterization of innervation and nerve-immune cell neighborhood in mouse thymus. Cell Tissue Res. 378, 239–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Jung, W. C., Levesque, J. P. & Ruitenberg, M. J. It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Semin. Cell Dev. Biol. 61, 60–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020). This well-designed study identifies a specific brain–spleen neural connection in mice that enhances humoral responses in response to an elevated platform regimen.

    Article  CAS  PubMed  Google Scholar 

  15. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyajima, M. et al. Metabolic shift induced by systemic activation of T cells in PD-1-deficient mice perturbs brain monoamines and emotional behavior. Nat. Immunol. 18, 1342–1352 (2017). This paper reveals how the key immune checkpoint molecule PD1 is involved in regulating systemic metabolism, the biosynthesis of neurotransmitters and behaviours.

    Article  CAS  PubMed  Google Scholar 

  17. Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179, 864–879.e19 (2019). This interesting study suggests that stress-induced abnormal mitochondrial fission and purine synthesis in CD4+ T cells influence oligodendrocytes in the amygdala, which is a prerequisite for the onset of anxiety.

    Article  CAS  PubMed  Google Scholar 

  18. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Faulkner, S., Jobling, P., March, B., Jiang, C. C. & Hondermarck, H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 9, 702–710 (2019). This comprehensive review summarizes recent progress that deals with the potential link between tumour-induced innervation within the TME and cancer initiation, progression and metastasis.

    Article  CAS  PubMed  Google Scholar 

  20. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  PubMed  Google Scholar 

  21. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Cervantes-Villagrana, R. D., Albores-Garcia, D., Cervantes-Villagrana, A. R. & Garcia-Acevez, S. J. Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal. Transduct. Target. Ther. 5, 99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, E. K., Wolin, K. Y. & Colditz, G. A. Time course of risk factors in cancer etiology and progression. J. Clin. Oncol. 28, 4052–4057 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feng, Z. et al. Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc. Natl Acad. Sci. USA 109, 7013–7018 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jang, H. J., Boo, H. J., Lee, H. J., Min, H. Y. & Lee, H. Y. Chronic stress facilitates lung tumorigenesis by promoting exocytosis of IGF2 in lung epithelial cells. Cancer Res. 76, 6607–6619 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Schoemaker, M. J. et al. Psychological stress, adverse life events and breast cancer incidence: a cohort investigation in 106,000 women in the United Kingdom. Breast Cancer Res. 18, 72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. H. et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol. Psychiatry 25, 1487–1499 (2020). This systematic review and meta-analysis contains 51 eligible cohort studies involving 2,611,907 participants which test the association between ‘anxiety and depression’ and the risk of cancer incidence, cancer-specific mortality and all-cause mortality in patients with cancer.

    Article  PubMed  Google Scholar 

  29. Butow, P. et al. Does stress increase risk of breast cancer? A 15-year prospective study. Psychooncology 27, 1908–1914 (2018).

    Article  PubMed  Google Scholar 

  30. Tomiyama, A. J. Stress and obesity. Annu. Rev. Psychol. 70, 703–718 (2019).

    Article  PubMed  Google Scholar 

  31. Song, H. et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA 319, 2388–2400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Buchanan, T. W. & Lovallo, W. R. The role of genetics in stress effects on health and addiction. Curr. Opin. Psychol. 27, 72–76 (2019).

    Article  PubMed  Google Scholar 

  33. Anacker, C. et al. Neuroanatomic differences associated with stress susceptibility and resilience. Biol. Psychiatry 79, 840–849 (2016).

    Article  PubMed  Google Scholar 

  34. Misiewicz, Z. et al. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLoS Genet. 15, e1008358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mitchell, A. J. et al. Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncol. 12, 160–174 (2011).

    Article  PubMed  Google Scholar 

  36. Cordova, M. J., Riba, M. B. & Spiegel, D. Post-traumatic stress disorder and cancer. Lancet Psychiatry 4, 330–338 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mehnert, A. & Koch, U. Prevalence of acute and post-traumatic stress disorder and comorbid mental disorders in breast cancer patients during primary cancer care: a prospective study. Psychooncology 16, 181–188 (2007).

    Article  PubMed  Google Scholar 

  38. Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Batty, G. D., Russ, T. C., Stamatakis, E. & Kivimaki, M. Psychological distress in relation to site specific cancer mortality: pooling of unpublished data from 16 prospective cohort studies. BMJ 356, j108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Palesh, O. et al. Stress history and breast cancer recurrence. J. Psychosom. Res. 63, 233–239 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, X. et al. Prognostic value of depression and anxiety on breast cancer recurrence and mortality: a systematic review and meta-analysis of 282,203 patients. Mol. Psychiatry 25, 3186–3197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moreno-Smith, M., Lutgendorf, S. K. & Sood, A. K. Impact of stress on cancer metastasis. Future Oncol. 6, 1863–1881 (2010).

    Article  PubMed  Google Scholar 

  43. Chida, Y., Hamer, M., Wardle, J. & Steptoe, A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat. Clin. Pract. Oncol. 5, 466–475 (2008).

    Article  PubMed  Google Scholar 

  44. Powell, N. D. et al. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proc. Natl Acad. Sci. USA 110, 16574–16579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 11, 625–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, D. et al. Stress-related signaling pathways in lethal and nonlethal prostate cancer. Clin. Cancer Res. 22, 765–772 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, X. et al. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis. 10, 788 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saul, A. N. et al. Chronic stress and susceptibility to skin cancer. J. Natl Cancer Inst. 97, 1760–1767 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Ben-Eliyahu, S., Page, G. G., Yirmiya, R. & Shakhar, G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 80, 880–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, H. et al. Stress–glucocorticoid–TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 25, 1428–1441 (2019). This study provides strong evidence that psychological stress compromises the efficacy of immune-dependent cancer therapies, by elevating the endogenous glucocorticoid tonus and stimulating TSC22D3 expression in tumour-infiltrating dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  53. Kokolus, K. M. et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc. Natl Acad. Sci. USA 110, 20176–20181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao, L. et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He, L. et al. Glucocorticoid receptor signaling activates TEAD4 to promote breast cancer progression. Cancer Res. 79, 4399–4411 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Obradovic, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Melhem, A. et al. Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin. Cancer Res. 15, 3196–3204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petrella, A. et al. Dexamethasone inhibits TRAIL-induced apoptosis of thyroid cancer cells via Bcl-xL induction. Eur. J. Cancer 42, 3287–3293 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Sorrentino, G. et al. Glucocorticoid receptor signalling activates YAP in breast cancer. Nat. Commun. 8, 14073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flaherty, R. L. et al. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Res. 19, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cui, B. et al. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J. Clin. Invest. 129, 1030–1046 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sastry, K. S. et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J. Biol. Chem. 282, 14094–14100 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Nagaraja, A. S. et al. Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2, e93076 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang, E. V. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66, 10357–10364 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Sood, A. K. et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res. 12, 369–375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kilpatrick, L. E. et al. Complex formation between VEGFR2 and the β2-adrenoceptor. Cell Chem. Biol. 26, 830–841.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–6623 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cole, S. W. & Sood, A. K. Molecular pathways: β-adrenergic signaling in cancer. Clin. Cancer Res. 18, 1201–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, D., Katz, A., Lee, C. H. & Simon, M. I. Activation of phospholipase C by α1-adrenergic receptors is mediated by the α subunits of Gq family. J. Biol. Chem. 267, 25798–25802 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Wick, G., Hu, Y., Schwarz, S. & Kroemer, G. Immunoendocrine communication via the hypothalamo-pituitary–adrenal axis in autoimmune diseases. Endocr. Rev. 14, 539–563 (1993).

    CAS  PubMed  Google Scholar 

  73. Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ping, Y. Q. et al. Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex. Nature 589, 620–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, J. J. et al. Gpr97 is essential for the follicular versus marginal zone B-lymphocyte fate decision. Cell Death Dis. 4, e853 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chu, T. Y. et al. GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation. Nat. Commun. 13, 6385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Graeff, F. G., Guimaraes, F. S., De Andrade, T. G. & Deakin, J. F. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Mineur, Y. S. et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc. Natl Acad. Sci. USA 110, 3573–3578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lydiard, R. B. The role of GABA in anxiety disorders. J. Clin. Psychiatry 64, 21–27 (2003).

    CAS  PubMed  Google Scholar 

  81. Nuss, P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 11, 165–175 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Panula, P. & Nuutinen, S. The histaminergic network in the brain: basic organization and role in disease. Nat. Rev. Neurosci. 14, 472–487 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. de Almeida, D. O., Ferreira, H. S., Pereira, L. B. & Fregoneze, J. B. Hypertensive response to stress: the role of histaminergic H1 and H2 receptors in the medial amygdala. Physiol. Behav. 144, 95–102 (2015).

    Article  PubMed  Google Scholar 

  84. Bali, A., Randhawa, P. K. & Jaggi, A. S. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference. Neurosci. Biobehav. Rev. 51, 138–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Valentino, R. J. & Van Bockstaele, E. Endogenous opioids: the downside of opposing stress. Neurobiol. Stress. 1, 23–32 (2015).

    Article  PubMed  Google Scholar 

  86. Pecina, M. et al. Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches. Mol. Psychiatry 24, 576–587 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Oshaghi, M., Kourosh-Arami, M. & Roozbehkia, M. Role of neurotransmitters in immune-mediated inflammatory disorders: a crosstalk between the nervous and immune systems. Neurol. Sci. 44, 99–113 (2023).

    Article  PubMed  Google Scholar 

  88. Herman, J. P. et al. Regulation of the hypothalamic–pituitary–adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lanfumey, L., Mongeau, R., Cohen-Salmon, C. & Hamon, M. Corticosteroid–serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci. Biobehav. Rev. 32, 1174–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Sui, P. et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 360, eaan8546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sidler, D. et al. Colon cancer cells produce immunoregulatory glucocorticoids. Oncogene 30, 2411–2419 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Honke, N. et al. Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biol. 20, e3001513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guida, F. et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 67, 230–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker, A. K. et al. Circulating epinephrine is not required for chronic stress to enhance metastasis. Psychoneuroendocrinology 99, 191–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Renz, B. W. et al. β2 adrenergic–neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Renz, B. W. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8, 1458–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Renz, B. W. et al. β2 adrenergic–neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 34, 863–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reijmen, E., Vannucci, L., De Couck, M., De Greve, J. & Gidron, Y. Therapeutic potential of the vagus nerve in cancer. Immunol. Lett. 202, 38–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. De Couck, M., Caers, R., Spiegel, D. & Gidron, Y. The role of the vagus nerve in cancer prognosis: a systematic and a comprehensive review. J. Oncol. 2018, 1236787 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Husby, A., Wohlfahrt, J. & Melbye, M. Vasectomy and prostate cancer risk: a 38-year nationwide cohort study. J. Natl Cancer Inst. 112, 71–77 (2020).

    PubMed  Google Scholar 

  103. Webster, J. I., Tonelli, L. & Sternberg, E. M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20, 125–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Taves, M. D. & Ashwell, J. D. Glucocorticoids in T cell development, differentiation and function. Nat. Rev. Immunol. 18, 309–345 (2020).

    Google Scholar 

  105. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dhabhar, F. S. & McEwen, B. S. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl Acad. Sci. USA 96, 1059–1064 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sharma, D. & Farrar, J. D. Adrenergic regulation of immune cell function and inflammation. Semin. Immunopathol. 42, 709–717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hunzeker, J. T. et al. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. J. Immunol. 186, 183–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Franco, L. M. et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J. Exp. Med. 216, 384–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pani, L., Porcella, A. & Gessa, G. L. The role of stress in the pathophysiology of the dopaminergic system. Mol. Psychiatry 5, 14–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Soliman, A. et al. Stress-induced dopamine release in humans at risk of psychosis: a [11C]raclopride PET study. Neuropsychopharmacology 33, 2033–2041 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Pruessner, J. C., Champagne, F., Meaney, M. J. & Dagher, A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J. Neurosci. 24, 2825–2831 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Watanabe, Y. et al. Dopamine selectively induces migration and homing of naive CD8+ T cells via dopamine receptor D3. J. Immunol. 176, 848–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Mikulak, J. et al. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J. Immunol. 193, 2792–2800 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Yanagawa, Y., Matsumoto, M. & Togashi, H. Enhanced dendritic cell antigen uptake via α2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. J. Immunol. 185, 5762–5768 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Takenaka, M. C. et al. Norepinephrine controls effector T cell differentiation through β2-adrenergic receptor-mediated inhibition of NF-κB and AP-1 in dendritic cells. J. Immunol. 196, 637–644 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Guereschi, M. G. et al. β2-Adrenergic receptor signaling in CD4+Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur. J. Immunol. 43, 1001–1012 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Schiller, M., Ben-Shaanan, T. L. & Rolls, A. Neuronal regulation of immunity: why, how and where? Nat. Rev. Immunol. 21, 20–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Lutgendorf, S. K. et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J. Clin. Oncol. 23, 7105–7113 (2005).

    Article  PubMed  Google Scholar 

  123. Varker, K. A. et al. Impaired natural killer cell lysis in breast cancer patients with high levels of psychological stress is associated with altered expression of killer immunoglobin-like receptors. J. Surg. Res. 139, 36–44 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Levi, B. et al. Stress impairs the efficacy of immune stimulation by CpG-C: potential neuroendocrine mediating mechanisms and significance to tumor metastasis and the perioperative period. Brain Behav. Immun. 56, 209–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koide, S. S. Mifepristone. Auxiliary therapeutic use in cancer and related disorders. J. Reprod. Med. 43, 551–560 (1998).

    CAS  PubMed  Google Scholar 

  126. Check, J. H., Dix, E., Cohen, R., Check, D. & Wilson, C. Efficacy of the progesterone receptor antagonist mifepristone for palliative therapy of patients with a variety of advanced cancer types. Anticancer. Res. 30, 623–628 (2010).

    CAS  PubMed  Google Scholar 

  127. Check, J. H., Check, D., Wilson, C. & Lofberg, P. Long-term high-quality survival with single-agent mifepristone treatment despite advanced cancer. Anticancer. Res. 36, 6511–6513 (2016).

    Article  PubMed  Google Scholar 

  128. Cronin-Fenton, D. et al. Concurrent new drug prescriptions and prognosis of early breast cancer: studies using the Danish Breast Cancer Group clinical database. Acta Oncol. 57, 120–128 (2018). This study identifies a particular myeloid cell population in the TME that produces endogenous glucocorticoid to induce dysfunctional CD8+ T cells and failure of cancer immunotherapy.

    Article  PubMed  Google Scholar 

  129. Mulick, A. et al. Is improvement in comorbid major depression associated with longer survival in people with cancer? A long-term follow-up of participants in the SMaRT oncology-2 and 3 trials. J. Psychosom. Res. 116, 106–112 (2019).

    Article  PubMed  Google Scholar 

  130. Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of dysfunction in the tumor microenvironment. Immunity 53, 658–671.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yi, L. & Zheng, C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit. Rev. Microbiol. 47, 34–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Arbour, K. C. et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 36, 2872–2878 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Maxwell, R. et al. Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. Oncoimmunology 7, e1500108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Aston, W. J. et al. Dexamethasone differentially depletes tumour and peripheral blood lymphocytes and can impact the efficacy of chemotherapy/checkpoint blockade combination treatment. Oncoimmunology 8, e1641390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Papa, I. et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547, 318–323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van der Heijden, C. et al. Catecholamines induce trained immunity in monocytes in vitro and in vivo. Circ. Res. 127, 269–283 (2020).

    Article  PubMed  Google Scholar 

  137. Elenkov, I. J. in NeuroImmune Biology (eds del Rey, A. et al.) Vol. 7 189–206 (Elsevier, 2007).

  138. Arreola, R. et al. Immunomodulatory effects mediated by dopamine. J. Immunol. Res. 2016, 3160486 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Baik, J. H. Stress and the dopaminergic reward system. Exp. Mol. Med. 52, 1879–1890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bloomfield, M. A., McCutcheon, R. A., Kempton, M., Freeman, T. P. & Howes, O. The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife 8, e46797 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Saha, B., Mondal, A. C., Basu, S. & Dasgupta, P. S. Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int. Immunopharmacol. 1, 1363–1374 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Figueroa, C. et al. Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8+ T-cells favoring anti-tumor immunity. J. Neuroimmunol. 303, 99–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Hoeppner, L. H. et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol. 9, 270–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, J. et al. Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. J. Leukoc. Biol. 97, 191–200 (2015).

    Article  PubMed  Google Scholar 

  145. Myers, S. A., Eriksson, N., Burow, R., Wang, S. C. & Muscat, G. E. β-Adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues. Mol. Cell Endocrinol. 309, 101–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Daher, C. et al. Blockade of β-adrenergic receptors improves CD8+ T-cell priming and cancer vaccine efficacy. Cancer Immunol. Res. 7, 1849–1863 (2019).

    Article  PubMed  Google Scholar 

  148. Nissen, M. D., Sloan, E. K. & Mattarollo, S. R. β-Adrenergic signaling impairs antitumor CD8+ T-cell responses to B-cell lymphoma immunotherapy. Cancer Immunol. Res. 6, 98–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Qiao, G. et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol. Immunother. 68, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Qin, J. F. et al. Adrenergic receptor β2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep. 48, 295–300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537–5552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheng, Y. et al. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Clin. Cancer Res. 25, 2621–2632 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Kokolus, K. M. et al. β blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7, e1405205 (2018).

    Article  PubMed  Google Scholar 

  155. Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, M. et al. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat. Commun. 11, 1821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Botta, F. & Maestroni, G. J. Adrenergic modulation of dendritic cell cancer vaccine in a mouse model: role of dendritic cell maturation. J. Immunother. 31, 263–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Hiller, J. G. et al. Pre-operative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2019).

    Article  PubMed  Google Scholar 

  159. Shaashua, L. et al. Perioperative COX-2 and β-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin. Cancer Res. 23, 4651–4661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. De Giorgi, V. et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 4, e172908 (2018).

    Article  PubMed  Google Scholar 

  161. Phadke, S. & Clamon, G. β blockade as adjunctive breast cancer therapy: a review. Crit. Rev. Oncol. Hematol. 138, 173–177 (2019).

    Article  PubMed  Google Scholar 

  162. Zhang, S. et al. Neuroendocrine regulation of stress-induced T cell dysfunction during lung cancer immunosurveillance via the Kisspeptin/GPR54 signaling pathway. Adv. Sci. 9, e2104132 (2022).

    Article  Google Scholar 

  163. Hill, M. N. et al. Endogenous cannabinoid signaling is essential for stress adaptation. Proc. Natl Acad. Sci. USA 107, 9406–9411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xiong, X. et al. Cannabis suppresses antitumor immunity by inhibiting JAK/STAT signaling in T cells through CNR2. Signal. Transduct. Target. Ther. 7, 99 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Won, E. & Kim, Y. K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr. Neuropharmacol. 14, 665–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gao, F. G., Wan da, F. & Gu, J. R. Ex vivo nicotine stimulation augments the efficacy of therapeutic bone marrow-derived dendritic cell vaccination. Clin. Cancer Res. 13, 3706–3712 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Dubeykovskaya, Z. et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat. Commun. 7, 10517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, L. et al. Hippocampal metabolic differences implicate distinctions between physical and psychological stress in four rat models of depression. Transl. Psychiatry 8, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Czeh, B. et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA 98, 12796–12801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Jia, H. M. et al. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression. Sci. Rep. 6, 23441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rodrigues Mantuano, N. et al. Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation. Cancer Immunol. Res. 8, 1262–1272 (2020). This study explores how hyperglycaemia drives tumour progression, by increasing O-GlcNAcylation in TAMs to switch on the M2-like phenotype and favour cancer immune evasion.

    Article  PubMed  Google Scholar 

  173. Brzozowski, B. et al. Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): role of brain–gut axis. Curr. Neuropharmacol. 14, 892–900 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Patel, C. H., Leone, R. D., Horton, M. R. & Powell, J. D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug. Discov. 18, 669–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nonogaki, K. & Iguchi, A. Stress, acute hyperglycemia, and hyperlipidemia role of the autonomic nervous system and cytokines. Trends Endocrinol. Metab. 8, 192–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Maduka, I. C., Neboh, E. E. & Ufelle, S. A. The relationship between serum cortisol, adrenaline, blood glucose and lipid profile of undergraduate students under examination stress. Afr. Health Sci. 15, 131–136 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mohammadpour, H., MacDonald, C. R., McCarthy, P. L., Abrams, S. I. & Repasky, E. A. β2-Adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME. Cell Rep. 37, 109883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Muthuswamy, R. et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav. Immun. 62, 78–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Picard, M. & McEwen, B. S. Psychological stress and mitochondria: a systematic review. Psychosom. Med. 80, 141–153 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Qiao, G. et al. Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol. Res. 9, 651–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tokunaga, A. et al. Selective inhibition of low-affinity memory CD8+ T cells by corticosteroids. J. Exp. Med. 216, 2701–2713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Perego, M. et al. Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci. Transl. Med. 12, eaab5817 (2020).

    Article  Google Scholar 

  186. Bresnick, A. R., Weber, D. J. & Zimmer, D. B. S100 proteins in cancer. Nat. Rev. Cancer 15, 96–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Diskin, C., Ryan, T. A. J. & O’Neill, L. A. J. Modification of proteins by metabolites in immunity. Immunity 54, 19–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Barth, E. et al. Glucose metabolism and catecholamines. Crit. Care Med. 35, S508–S518 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chang, Y. H., Weng, C. L. & Lin, K. I. O-GlcNAcylation and its role in the immune system. J. Biomed. Sci. 27, 57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Xiu, F., Stanojcic, M., Diao, L. & Jeschke, M. G. Stress hyperglycemia, insulin treatment, and innate immune cells. Int. J. Endocrinol. 2014, 486403 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Picard, M., Juster, R. P. & McEwen, B. S. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat. Rev. Endocrinol. 10, 303–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Jiang, H. et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118, 919–988 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wild, A. R. et al. Exploring the expression patterns of palmitoylating and de-palmitoylating enzymes in the mouse brain using the curated RNA-seq database BrainPalmSeq. eLife 11, e75804 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zareba-Koziol, M. et al. Stress-induced changes in the S-palmitoylation and S-nitrosylation of synaptic proteins. Mol. Cell Proteom. 18, 1916–1938 (2019).

    Article  Google Scholar 

  196. Yao, H. et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 3, 306–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Morais, L. H., Schreiber, H. L. T. & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Mittal, R. et al. Neurotransmitters: the critical modulators regulating gut–brain axis. J. Cell Physiol. 232, 2359–2372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu, M. et al. Associations between disordered gut microbiota and changes of neurotransmitters and short-chain fatty acids in depressed mice. Transl. Psychiatry 10, 350 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 48, 186–194 (2015).

    Article  PubMed  Google Scholar 

  202. Jiang, H. Y. et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res. 104, 130–136 (2018).

    Article  PubMed  Google Scholar 

  203. Hollins, S. L. & Hodgson, D. M. Stress, microbiota, and immunity. Curr. Opin. Behav. Sci. 28, 66–71 (2019).

    Article  Google Scholar 

  204. Gao, X. et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl Acad. Sci. USA 115, E2960–E2969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yu, L. X. & Schwabe, R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 14, 527–539 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  208. Ochoa-Reparaz, J. et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J. Immunol. 185, 4101–4108 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell 165, 276–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020). This study reports that naturally processed cancer antigens and microbial peptides may share cross-reactive T cell epitopes, which can be targeted for cancer immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  211. Ruff, W. E. & Kriegel, M. A. Autoimmune host–microbiota interactions at barrier sites and beyond. Trends Mol. Med. 21, 233–244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ait-Belgnaoui, A. et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37, 1885–1895 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Ait-Belgnaoui, A. et al. Bifidobacterium longum and Lactobacillus helveticus synergistically suppress stress-related visceral hypersensitivity through hypothalamic–pituitary–adrenal axis modulation. J. Neurogastroenterol. Motil. 24, 138–146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Merchak, A. & Gaultier, A. Microbial metabolites and immune regulation: new targets for major depressive disorder. Brain Behav. Immun. Health 9, 100169 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sittipo, P., Choi, J., Lee, S. & Lee, Y. K. The function of gut microbiota in immune-related neurological disorders: a review. J. Neuroinflammation 19, 154 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kim, C. H. Immune regulation by microbiome metabolites. Immunology 154, 220–229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhao, L. et al. TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization. Acta Pharm. Sin. B 12, 787–800 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. You, W. et al. Farnesoid X receptor constructs an immunosuppressive microenvironment and sensitizes FXRhighPD-L1low NSCLC to anti-PD-1 immunotherapy. Cancer Immunol. Res. 7, 990–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Kenison, J. E. et al. The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proc. Natl Acad. Sci. USA 118, e2012692118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297 e285 (2019). This study shows that microbiota-derived metabolites, SCFAs, can guide the metabolic rewiring that increases the memory potential of antigen-specific CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  225. Botticelli, A. et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J. Transl. Med. 18, 49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Nomura, M. et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw. Open. 3, e202895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Schneider, M. A. et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci. Transl. Med. 13, eabc8188 (2021).

    Article  CAS  PubMed  Google Scholar 

  228. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kienzl, M., Kargl, J. & Schicho, R. The immune endocannabinoid system of the tumor microenvironment. Int J. Mol. Sci. 21, 8929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Huang, D. et al. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nat. Cell Biol. 24, 230–241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Luqman, A., Nega, M., Nguyen, M. T., Ebner, P. & Gotz, F. SadA-expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep. 22, 535–545 (2018).

    Article  PubMed  Google Scholar 

  233. Williams, B. B. et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16, 495–503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bauknecht, P. & Jekely, G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 15, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Connil, N. et al. Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl. Env. Microbiol. 68, 3537–3544 (2002).

    Article  CAS  Google Scholar 

  236. Lameris, T. W. et al. Catecholamine handling in the porcine heart: a microdialysis approach. Am. J. Physiol. 277, H1562–H1569 (1999).

    CAS  PubMed  Google Scholar 

  237. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kepp, O., Marabelle, A., Zitvogel, L. & Kroemer, G. Oncolysis without viruses — inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol. 17, 49–64 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Foster, J. A., Rinaman, L. & Cryan, J. F. Stress & the gut–brain axis: regulation by the microbiome. Neurobiol. Stress. 7, 124–136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sidler, D. et al. Colon cancer cells produce immunoregulatory glucocorticoids. Oncoimmunology 1, 529–530 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Verhoeven, G. T. et al. Glucocorticoids hamper the ex vivo maturation of lung dendritic cells from their low autofluorescent precursors in the human bronchoalveolar lavage: decreases in allostimulatory capacity and expression of CD80 and CD86. Clin. Exp. Immunol. 122, 232–240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rea, D. et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95, 3162–3167 (2000).

    Article  CAS  PubMed  Google Scholar 

  244. Kim, K. D., Choe, Y. K., Choe, I. S. & Lim, J. S. Inhibition of glucocorticoid-mediated, caspase-independent dendritic cell death by CD40 activation. J. Leukoc. Biol. 69, 426–434 (2001).

    Article  CAS  PubMed  Google Scholar 

  245. Herold, M. J., McPherson, K. G. & Reichardt, H. M. Glucocorticoids in T cell apoptosis and function. Cell Mol. Life Sci. 63, 60–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  246. Talaber, G. et al. Mitochondrial translocation of the glucocorticoid receptor in double-positive thymocytes correlates with their sensitivity to glucocorticoid-induced apoptosis. Int. Immunol. 21, 1269–1276 (2009).

    Article  CAS  PubMed  Google Scholar 

  247. Lowenberg, M. et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106, 1703–1710 (2005).

    Article  PubMed  Google Scholar 

  248. Wu, Y. et al. The disbalance of LRP1 and SIRPα by psychological stress dampens the clearance of tumor cells by macrophages. Acta Pharm. Sin. B 12, 197–209 (2022).

    Article  PubMed  Google Scholar 

  249. Xie, Y. et al. Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration. Dis. Model. Mech. 12, dmm037887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lu, Y. et al. Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol. Immunol. 15, 618–629 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Xiang, Z. et al. Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene 40, 5002–5012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Eddy, J. L., Krukowski, K., Janusek, L. & Mathews, H. L. Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol. 290, 120–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Quatrini, L. et al. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat. Immunol. 19, 954–962 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Cavalcanti, D. M. et al. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br. J. Pharmacol. 152, 1291–1300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Nadkarni, S. et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ. Res. 114, 242–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  257. Saffar, A. S., Ashdown, H. & Gounni, A. S. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr. Drug. Targets 12, 556–562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Staedtke, V. et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 564, 273–277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cao, M. et al. Chronic restraint stress promotes the mobilization and recruitment of myeloid-derived suppressor cells through β-adrenergic-activated CXCL5–CXCR2–Erk signaling cascades. Int. J. Cancer 149, 460–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Karvonen, H. et al. Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness. Cell Death Dis. 11, 790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Sood, A. K. et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J. Clin. Invest. 120, 1515–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Dwyer, A. R. et al. Glucocorticoid receptors drive breast cancer cell migration and metabolic reprogramming via PDK4. Endocrinology 164, bqad083 (2023).

    Article  PubMed  Google Scholar 

  264. Karra, A. G. et al. Increased expression of the mitochondrial glucocorticoid receptor enhances tumor aggressiveness in a mouse xenograft model. Int. J. Mol. Sci. 24, 3740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Tiwari, R. K. et al. Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem. Biol. Interact. 369, 110278 (2023).

    Article  CAS  PubMed  Google Scholar 

  266. Talaber, G., Jondal, M. & Okret, S. Local glucocorticoid production in the thymus. Steroids 103, 58–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  267. Croft, A. P. et al. Effects of minor laboratory procedures, adrenalectomy, social defeat or acute alcohol on regional brain concentrations of corticosterone. Brain Res. 1238, 12–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  268. Cima, I. et al. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J. Exp. Med. 200, 1635–1646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Nagashima, H. et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  271. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015). This study highlights that certain bacterial species can act as important modulators of host 5-HT biosynthesis and its downstream bioactivities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Finocchiaro, L. M. et al. Serotonin and melatonin synthesis in peripheral blood mononuclear cells: stimulation by interferon-γ as part of an immunomodulatory pathway. J. Interferon Res. 8, 705–716 (1988).

    Article  CAS  PubMed  Google Scholar 

  273. Kushnir-Sukhov, N. M., Brown, J. M., Wu, Y., Kirshenbaum, A. & Metcalfe, D. D. Human mast cells are capable of serotonin synthesis and release. J. Allergy Clin. Immunol. 119, 498–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  274. Leon-Ponte, M., Ahern, G. P. & O’Connell, P. J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109, 3139–3146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Brenner, B. et al. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Cox, M. A. et al. Beyond neurotransmission: acetylcholine in immunity and inflammation. J. Intern. Med. 287, 120–133 (2019).

    Article  PubMed  Google Scholar 

  277. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kiecolt-Glaser, J. K. et al. Yoga’s impact on inflammation, mood, and fatigue in breast cancer survivors: a randomized controlled trial. J. Clin. Oncol. 32, 1040–1049 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Stagl, J. M. et al. A randomized controlled trial of cognitive-behavioral stress management in breast cancer: survival and recurrence at 11-year follow-up. Breast Cancer Res. Treat. 154, 319–328 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Teo, I., Krishnan, A. & Lee, G. L. Psychosocial interventions for advanced cancer patients: a systematic review. Psychooncology 28, 1394–1407 (2019).

    Article  PubMed  Google Scholar 

  281. Dethlefsen, C. et al. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res. 77, 4894–4904 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. Huang, C. W. et al. Irisin, an exercise myokine, potently suppresses tumor proliferation, invasion, and growth in glioma. FASEB J. 34, 9678–9693 (2020).

    Article  CAS  PubMed  Google Scholar 

  283. Sarkar, D. K., Murugan, S., Zhang, C. & Boyadjieva, N. Regulation of cancer progression by β-endorphin neuron. Cancer Res. 72, 836–840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Harber, V. J. & Sutton, J. R. Endorphins and exercise. Sports Med. 1, 154–171 (1984).

    Article  CAS  PubMed  Google Scholar 

  285. Hojman, P. et al. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am. J. Physiol. Endocrinol. Metab. 301, E504–E510 (2011).

    Article  CAS  PubMed  Google Scholar 

  286. Hamy, A. S. et al. Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer. Oncoimmunology 9, 1677427 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Y.M. is supported by Science and Technology Innovation 2030 Major Project (STI2030-Major Projects 2022ZD0205700), Natural Science Foundation of China (NSFC; grant No. 81972701), CAMS Innovation Fund for Medical Sciences (CIFMS; 2021-I2M-1-074, 2022-I2M-2-004), National special support plan for high-level talents, Suzhou Municipal Key Laboratory (SZS2023005) and Innovative and Entrepreneurial Team Program (Jiangsu Province). G.K. is supported by the Ligue contre le Cancer (équipe labellisée), Agence National de la Recherche (ANR)–Projets blancs, AMMICa US23/CNRS UMS3655, Association pour la recherche sur le cancer (ARC), Cancéropôle Ile-de-France, Fondation pour la Recherche Médicale (FRM), Equipex Onco-Pheno-Screen, European Joint Programme on Rare Diseases, the European Union Horizon 2020 Projects Oncobiome and Crimson, Institut National du Cancer (INCa), Institut Universitaire de France, LabEx Immuno-Oncology (ANR-18-IDEX-0001), High-end Foreign Expert Program in China (GDW20171100085), the RHU Immunolife, Seerave Foundation, SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE) and SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this Review. All authors contributed substantially to discussion of the content. Y.M. wrote and edited the manuscript before submission.

Corresponding author

Correspondence to Yuting Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Guillermo Armaiz-Pena, Hubert Hondermark and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Kroemer, G. The cancer-immune dialogue in the context of stress. Nat Rev Immunol 24, 264–281 (2024). https://doi.org/10.1038/s41577-023-00949-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00949-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer