Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes

Key Points

  • Biliary atresia is an inflammatory and fibrosing cholangiopathy of infancy caused by viruses, environmental toxins and targeted epithelial injury that obstructs extrahepatic bile ducts and rapidly progresses to end-stage cirrhosis

  • Precise clinical phenotyping classifies patients into nonsyndromic and embryonic forms, and into cyst-associated and cytomegalovirus-associated variants, which might have different disease pathologies

  • Liver tissue scoring for inflammation and fibrosis by histological features and gene expression profiles identifies different stages of disease at diagnosis

  • Analyses of human livers and models of experimental biliary atresia suggest that a type 1 immune response has a key role in the pathogenesis of bile duct injury and obstruction

  • The expression of type 2 cytokines promote cholangiocyte proliferation in extrahepatic bile ducts and hepatic fibrosis

  • Clinical, histological and molecular variability of disease at presentation form a strong rationale for future trials that take into consideration the predominant biological features of affected infants

Abstract

Biliary atresia is a severe cholangiopathy of early infancy that destroys extrahepatic bile ducts and disrupts bile flow. With a poorly defined disease pathogenesis, treatment consists of the surgical removal of duct remnants followed by hepatoportoenterostomy. Although this approach can improve the short-term outcome, the liver disease progresses to end-stage cirrhosis in most children. Further improvement in outcome will require a greater understanding of the mechanisms of biliary injury and fibrosis. Here, we review progress in the field, which has been fuelled by collaborative studies in larger patient cohorts and the development of cell culture and animal model systems to directly test hypotheses. Advances include the identification of phenotypic subgroups and stages of disease based on clinical, pathological and molecular features. Stronger evidence exists for viruses, toxins and gene sequence variations in the aetiology of biliary atresia, triggering a proinflammatory response that injures the duct epithelium and produces a rapidly progressive cholangiopathy. The immune response also activates the expression of type 2 cytokines that promote epithelial cell proliferation and extracellular matrix production by nonparenchymal cells. These advances provide insight into phenotype variability and might be relevant to the design of personalized trials to block progression of liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular targets and molecular events after RRV infection.
Figure 2: Biological processes and effectors of injury in biliary atresia.
Figure 3: Epithelial and fibrogenic response induced by IL-33.
Figure 4: Designing clinical trials based on biological stages of liver disease.

Similar content being viewed by others

References

  1. Dehghani, S. M., Efazati, N., Shahramian, I., Haghighat, M. & Imanieh, M. H. Evaluation of cholestasis in Iranian infants less than three months of age. Gastroenterol. Hepatol. Bed Bench 8, 42–48 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Hoerning, A. et al. Diversity of disorders causing neonatal cholestasis—the experience of a tertiary pediatric center in Germany. Front. Pediatr. 2, 65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, W. S., Chai, P. F., Boey, C. M. & Looi, L. M. Aetiology and outcome of neonatal cholestasis in Malaysia. Singapore Med. J. 51, 434–439 (2010).

    CAS  PubMed  Google Scholar 

  4. Stormon, M. O., Dorney, S. F., Kamath, K. R., O'Loughlin, E. V. & Gaskin, K. J. The changing pattern of diagnosis of infantile cholestasis. J. Paediatr. Child Health 37, 47–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber, R. A. & Kleinman, R. E. Biliary atresia. J. Pediatr. Gastroenterol. Nutr. 35 (Suppl. 1), S11–S16 (2002).

    Article  PubMed  Google Scholar 

  6. Russo, P. et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin. Gastroenterol. Hepatol. 9, 357–362 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chardot, C. et al. Epidemiology of biliary atresia in France: a national study 1986–1996. J. Hepatol. 31, 1006–1013 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Houwen, R. H. et al. Time-space distribution of extrahepatic biliary atresia in the Netherlands and West Germany. Surg. Inf. Child 43, 68–71 (1988).

    CAS  Google Scholar 

  9. Hsiao, C. H. et al. Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology 47, 1233–1240 (2008).

    Article  PubMed  Google Scholar 

  10. McKiernan, P. J., Baker, A. J. & Kelly, D. A. The frequency and outcome of biliary atresia in the UK and Ireland. Lancet 355, 25–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Yoon, P. W., Bresee, J. S., Olney, R. S., James, L. M. & Khoury, M. J. Epidemiology of biliary atresia: a population-based study. Pediatrics 99, 376–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Strickland, A. D. & Shannon, K. Studies in the etiology of extrahepatic biliary atresia: time-space clustering. J. Pediatr. 100, 749–753 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Wada, H. et al. Insignificant seasonal and geographical variation in incidence of biliary atresia in Japan: a regional survey of over 20 years. J. Pediatr. Surg. 42, 2090–2092 (2007).

    Article  PubMed  Google Scholar 

  14. Shneider, B. L. et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J. Pediatr. 148, 467–474 (2006).

    Article  PubMed  Google Scholar 

  15. Fallon, S. C., Chang, S., Finegold, M. J., Karpen, S. J. & Brandt, M. L. Discordant presentation of biliary atresia in premature monozygotic twins. J. Pediatr. Gastroenterol. Nutr. 57, e22–e23 (2013).

    Article  PubMed  Google Scholar 

  16. Hyams, J. S., Glaser, J. H., Leichtner, A. M. & Morecki, R. Discordance for biliary atresia in two sets of monozygotic twins. J. Pediatr. 107, 420–422 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Lachaux, A. et al. Familial extrahepatic biliary atresia. J. Pediatr. Gastroenterol. Nutr. 7, 280–283 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, B. M., Laberge, J. M., Schreiber, R., Weber, A. M. & Blanchard, H. Familial biliary atresia in three siblings including twins. J. Pediatr. Surg. 26, 1331–1333 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Strickland, A. D., Shannon, K. & Coln, C. D. Biliary atresia in two sets of twins. J. Pediatr. 107, 418–420 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Kasai, M. & Suzuki, S. A new operation for “non-correctable” biliary atresia, hepatic portoenterostomy. Shujutsu 13, 733–739 (1959).

    Google Scholar 

  21. Chardot, C. et al. Improving outcomes of biliary atresia: French national series 1986–2009. J. Hepatol. 58, 1209–1217 (2013).

    Article  PubMed  Google Scholar 

  22. Schreiber, R. A. et al. Biliary atresia: the Canadian experience. J. Pediatr. 151, 659–665 (2007).

    Article  PubMed  Google Scholar 

  23. Superina, R. et al. The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival. Ann. Surg. 254, 577–585 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ohi, R. Biliary atresia: a surgical perspective. Clin. Liver Dis. 4, 779–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Bessho, K. & Bezerra, J. A. Biliary atresia: will blocking inflammation tame the disease? Annu. Rev. Med. 62, 171–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moyer, K. et al. Staging of biliary atresia at diagnosis by molecular profiling of the liver. Genome Med. 2, 33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harpavat, S., Finegold, M. J. & Karpen, S. J. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 128, e1428–e1433 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Davenport, M., Savage, M., Mowat, A. P. & Howard, E. R. Biliary atresia splenic malformation syndrome: an etiologic and prognostic subgroup. Surgery 113, 662–668 (1993).

    CAS  PubMed  Google Scholar 

  29. Davenport, M. et al. The biliary atresia splenic malformation syndrome: a 28-year single-center retrospective study. J. Pediatr. 149, 393–400 (2006).

    Article  PubMed  Google Scholar 

  30. Schwarz, K. B. et al. Extrahepatic anomalies in infants with biliary atresia: results of a large prospective North American multicenter study. Hepatology 58, 1724–1731 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Muise, A. M. et al. Biliary atresia with choledochal cyst: implications for classification. Clin. Gastroenterol. Hepatol. 4, 1411–1414 (2006).

    Article  PubMed  Google Scholar 

  32. Davenport, M., Caponcelli, E., Livesey, E., Hadzic, N. & Howard, E. Surgical outcome in biliary atresia: etiology affects the influence of age at surgery. Ann. Surg. 247, 694–698 (2008).

    Article  PubMed  Google Scholar 

  33. Li, J. et al. Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype. J. Clin. Invest. 121, 4245–4256 (2011).

    Google Scholar 

  34. Xu, Y. et al. The perinatal infection of cytomegalovirus is an important etiology for biliary atresia in China. Clin. Pediatr. (Phila) 51, 109–113 (2012).

    Article  Google Scholar 

  35. Shen, C., Zheng, S., Wang, W. & Xiao, X. M. Relationship between prognosis of biliary atresia and infection of cytomegalovirus. World J. Pediatr. 4, 123–126 (2008).

    Article  PubMed  Google Scholar 

  36. Davenport, M. & Grieve, A. Maximizing Kasai portoenterostomy in the treatment of biliary atresia: medical and surgical options. South African Med. J. 102, 865–867 (2012).

    Article  Google Scholar 

  37. Davenport, M. Biliary atresia: clinical aspects. Semin. Pediatr. Surg. 21, 175–184 (2012).

    Article  PubMed  Google Scholar 

  38. Fischler, B., Svensson, J. F. & Nemeth, A. Early cytomegalovirus infection and the long-term outcome of biliary atresia. Acta Paediatr. 98, 1600–1602 (2009).

    Article  PubMed  Google Scholar 

  39. Schukfeh, N., Al-Gamrah, A., Petersen, C. & Kuebler, J. F. Detection of hepatotropic viruses has no impact on the prognosis after Kasai procedure. J. Pediatr. Surg. 47, 1828–1832 (2012).

    Article  PubMed  Google Scholar 

  40. Brindley, S. M. et al. Cytomegalovirus-specific T-cell reactivity in biliary atresia at the time of diagnosis is associated with deficits in regulatory T cells. Hepatology 55, 1130–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sokol, R. J. et al. Screening and outcomes in biliary atresia: summary of a national institutes of health workshop. Hepatology 46, 566–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Volpert, D. et al. Outcome of early hepatic portoenterostomy for biliary atresia. J. Pediatr. Gastroenterol. Nutr. 32, 265–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Azarow, K. S., Phillips, M. J., Sandler, A. D., Hagerstrand, I. & Superina, R. A. Biliary atresia: should all patients undergo a portoenterostomy? J. Pediatr. Surg. 32, 168–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Pape, L., Olsson, K., Petersen, C., von Wasilewski, R. & Melter, M. Prognostic value of computerized quantification of liver fibrosis in children with biliary atresia. Liver Transpl. 15, 876–882 (2009).

    Article  PubMed  Google Scholar 

  45. Weerasooriya, V. S., White, F. V. & Shepherd, R. W. Hepatic fibrosis and survival in biliary atresia. J. Pediatr. 144, 123–125 (2004).

    Article  PubMed  Google Scholar 

  46. Santos, J. L. et al. The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J. Pediatr. Surg. 44, 695–701 (2009).

    Article  PubMed  Google Scholar 

  47. Balistreri, W. F. et al. Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology 23, 1682–1692 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Bezerra, J. A. The next challenge in pediatric cholestasis: deciphering the pathogenesis of biliary atresia. J. Pediatr. Gastroenterol. Nutr. 43 (Suppl. 1), S23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Desmet, V. J. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology 16, 1069–1083 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Tan, C. E., Davenport, M., Driver, M. & Howard, E. R. Does the morphology of the extrahepatic biliary remnants in biliary atresia influence survival? A review of 205 cases. J. Pediatr. Surg. 29, 1459–1464 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Takashima, Y., Terada, M., Kawabata, M. & Suzuki, A. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology 61, 1003–1011 (2014).

    Article  Google Scholar 

  52. Pacheco, M. C., Campbell, K. M. & Bove, K. E. Ductal plate malformation-like arrays in early explants after a Kasai procedure are independent of splenic malformation complex (heterotaxy). Pediatr. Dev. Pathol. 12, 355–360 (2009).

    Article  PubMed  Google Scholar 

  53. dos Santos, J. L., da Silveira, T. R., da Silva, V. D., Cerski, C. T. & Wagner, M. B. Medial thickening of hepatic artery branches in biliary atresia. A morphometric study. J. Pediatr. Surg. 40, 637–642 (2005).

    Article  PubMed  Google Scholar 

  54. Ho, C. W. et al. The pathogenesis of biliary atresia: a morphological study of the hepatobiliary system and the hepatic artery. J. Pediatr. Gastroenterol. Nutr. 16, 53–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. de Souza, A. F. et al. Angiopoietin 1 and angiopoietin 2 are associated with medial thickening of hepatic arterial branches in biliary atresia. Pediatr. Res. 75, 22–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Edom, P. T., Meurer, L., da Silveira, T. R., Matte, U. & dos Santos, J. L. Immunolocalization of VEGF A and its receptors, VEGFR1 and VEGFR2, in the liver from patients with biliary atresia. Appl. Immunohist. Mol. Morphol. 19, 360–368 (2011).

    Article  CAS  Google Scholar 

  57. Carmi, R., Magee, C. A., Neill, C. A. & Karrer, F. M. Extrahepatic biliary atresia and associated anomalies: etiologic heterogeneity suggested by distinctive patterns of associations. Am. J. Med. Genet. 45, 683–693 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Yokoyama, T. et al. Reversal of left-right asymmetry: a situs inversus mutation. Science 260, 679–682 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Schon, P. et al. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Human Genetics 110, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Davit-Spraul, A., Baussan, C., Hermeziu, B., Bernard, O. & Jacquemin, E. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J. Pediatr. Gastroenterol. Nutr. 46, 111–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Jacquemin, E., Cresteil, D., Raynaud, N. & Hadchouel, M. CFC1 gene mutation and biliary atresia with polysplenia syndrome. J. Pediatr. Gastroenterol. Hepatol. Nutr. 34, 326–327 (2002).

    Article  Google Scholar 

  62. Arikan, C. et al. Polymorphisms of the ICAM-1 gene are associated with biliary atresia. Dig. Dis. Sci. 53, 2000–2004 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Shih, H. H. et al. Promoter polymorphism of the CD14 endotoxin receptor gene is associated with biliary atresia and idiopathic neonatal cholestasis. Pediatrics 116, 437–441 (2005).

    Article  PubMed  Google Scholar 

  64. Kohsaka, T. et al. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology 36, 904–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, H. C. et al. Genetic variation in the vascular endothelial growth factor gene is associated with biliary atresia. J. Clin. Gastroenterol. 44, 135–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Udomsinprasert, W. et al. +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with the susceptibility to biliary atresia. World J. Pediatr. 8, 328–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, R. et al. Polymorphism of ITGB2 gene 3'-UTR+145C/A is associated with biliary atresia. Digestion 88, 65–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Cui, S. et al. Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144, 1107–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Omenetti, A. et al. Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology 53, 1246–1258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Barcelo, M. M. et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum. Mol. Genet. 19, 2917–2925 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaewkiattiyot, S., Honsawek, S., Vejchapipat, P., Chongsrisawat, V. & Poovorawan, Y. Association of X-prolyl aminopeptidase 1 rs17095355 polymorphism with biliary atresia in Thai children. Hepatol. Res. 41, 1249–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Tsai, E. A. et al. Replication of a GWAS signal in a Caucasian population implicates ADD3 in susceptibility to biliary atresia. Hum. Genet. 133, 235–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Harper, P., Plant, J. W. & Unger, D. B. Congenital biliary atresia and jaundice in lambs and calves. Aust. Vet. J. 67, 18–22 (1990).

    Article  CAS  PubMed  Google Scholar 

  74. Waisbourd-Zinman, O. et al. A novel toxin responsible for outbreaks of biliary atresia in livestock causes lumen obstruction in a cholangiocyte spheroid model [abstract 104]. Hepatology 60 (Suppl. 1), 249A (2014).

    Google Scholar 

  75. Zhao, X. et al. The zebrafish duct bend mutation is a sensitizer to toxin-induced biliary atresia and a potential homologue of a human biliary atresia modifier [abstract 156]. Hepatology 60 (Suppl. 1), 274A (2014).

    Google Scholar 

  76. Landing, B. H. Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst—the concept of infantile obstructive cholangiopathy. Prog. Pediatr. Surg. 6, 113–139 (1974).

    CAS  PubMed  Google Scholar 

  77. Mack, C. L. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin. Liver. Dis. 27, 233–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jevon, G. P. & Dimmick, J. E. Biliary atresia and cytomegalovirus infection: a DNA study. Pediatr. Dev. Pathol. 2, 11–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Al-Masri, A. N. et al. Expression of the interferon-induced Mx proteins in biliary atresia. J. Pediatr. Surg. 41, 1139–1143 (2006).

    Article  PubMed  Google Scholar 

  80. Glaser, J. H., Balistreri, W. F. & Morecki, R. Role of reovirus type 3 in persistent infantile cholestasis. J. Pediatr. 105, 912–915 (1984).

    Article  CAS  PubMed  Google Scholar 

  81. Morecki, R., Glaser, J. H., Johnson, A. B. & Kress, Y. Detection of reovirus type 3 in the porta hepatis of an infant with extrahepatic biliary atresia: ultrastructural and immunocytochemical study. Hepatology 4, 1137–1142 (1984).

    Article  CAS  PubMed  Google Scholar 

  82. Richardson, S. C., Bishop, R. F. & Smith, A. L. Reovirus serotype 3 infection in infants with extrahepatic biliary atresia or neonatal hepatitis. J. Gastroenterol. Hepatol. 9, 264–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Tyler, K. L. et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 27, 1475–1482 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Shivakumar, P. et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-γ in experimental biliary atresia. J. Clin. Invest. 114, 322–329 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Feldman, A. G. & Mack, C. L. Biliary atresia: cellular dynamics and immune dysregulation. Semin. Pediatr. Surg. 21, 192–200 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hartley, J. L., Davenport, M. & Kelly, D. A. Biliary atresia. Lancet 374, 1704–1713 (2009).

    Article  PubMed  Google Scholar 

  87. Mack, C. L., Feldman, A. G. & Sokol, R. J. Clues to the etiology of bile duct injury in biliary atresia. Semin. Liver. Dis. 32, 307–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Petersen, C. & Davenport, M. Aetiology of biliary atresia: what is actually known? Orphanet. J. Rare. Dis. 8, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cai, S. Y. et al. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion. Hepatology 57, 2418–2426 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. [comment]. Cancer Cell 1, 133–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bangaru, B., Morecki, R., Glaser, J. H., Gartner, L. M. & Horwitz, M. S. Comparative studies of biliary atresia in the human newborn and reovirus-induced cholangitis in weanling mice. Lab. Invest. 43, 456–462 (1980).

    CAS  PubMed  Google Scholar 

  93. Szavay, P. O., Leonhardt, J., Czech-Schmidt, G. & Petersen, C. The role of reovirus type 3 infection in an established murine model for biliary atresia. Eur. J. Pediatr. Surg. 12, 248–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wilson, G. A., Morrison, L. A. & Fields, B. N. Association of the reovirus S1 gene with serotype 3-induced biliary atresia in mice. J. Virol. 68, 6458–6465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Petersen, C. et al. New aspects in a murine model for extrahepatic biliary atresia. J. Pediatr. Surg. 32, 1190–1195 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Riepenhoff-Talty, M. et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr. Res. 33, 394–399 (1993).

    CAS  PubMed  Google Scholar 

  97. Carvalho, E. et al. Analysis of the Biliary Transcriptome in Experimental Biliary Atresia. Gastroenterology 129, 713–717 (2005).

    Article  PubMed  Google Scholar 

  98. Leonhardt, J. et al. Gene expression profile of the infective murine model for biliary atresia. Pediatr. Surg. Int. 22, 84–89 (2006).

    Article  PubMed  Google Scholar 

  99. Mack, C. L., Tucker, R. M., Sokol, R. J. & Kotzin, B. L. Armed CD4+ TH1 effector cells and activated macrophages participate in bile duct injury in murine biliary atresia. Clin. Immunol. 115, 200–209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shivakumar, P. et al. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia. Gastroenterology 133, 268–277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shivakumar, P., Sabla, G. E., Whitington, P., Chougnet, C. A. & Bezerra, J. A. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J. Clin. Invest. 119, 2281–2290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ahmed, A. F. et al. CD8+ T cells infiltrating into bile ducts in biliary atresia do not appear to function as cytotoxic T cells: a clinicopathological analysis. J. Pathol. 193, 383–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Broome, U., Nemeth, A., Hultcrantz, R. & Scheynius, A. Different expression of HLA-DR and ICAM-1 in livers from patients with biliary atresia and Byler's disease. J. Hepatol. 26, 857–862 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Davenport, M. et al. Immunohistochemistry of the liver and biliary tree in extrahepatic biliary atresia. J. Pediatr. Surg. 36, 1017–1025 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Dillon, P. W., Belchis, D., Minnick, K. & Tracy, T. Differential expression of the major histocompatibility antigens and ICAM-1 on bile duct epithelial cells in biliary atresia. Tohoku J. Exp. Med. 181, 33–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Mack, C. L. et al. Biliary atresia is associated with CD4+ TH1 cell-mediated portal tract inflammation. Pediatr. Res. 56, 79–87 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bill, A. H., Haas, J. E. & Foster, G. L. Biliary atresia: histopathologic observations and reflections upon its natural history. J. Pediatr. Surg. 12, 977–982 (1977).

    Article  CAS  PubMed  Google Scholar 

  108. Gosseye, S., Otte, J. B., De Meyer, R. & Maldague, P. A histological study of extrahepatic biliary atresia. Acta Paediatr. Belg. 30, 85–90 (1977).

    CAS  PubMed  Google Scholar 

  109. Ohya, T., Fujimoto, T., Shimomura, H. & Miyano, T. Degeneration of intrahepatic bile duct with lymphocyte infiltration into biliary epithelial cells in biliary atresia. J. Pediatr. Surg. 30, 515–518 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Mack, C. L. et al. Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 133, 278–287 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bezerra, J. A. et al. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 360, 1563–1659 (2002).

    Article  Google Scholar 

  112. Tracy, T. F. Jr, Dillon, P., Fox, E. S., Minnick, K. & Vogler, C. The inflammatory response in pediatric biliary disease: macrophage phenotype and distribution. J. Pediatr. Surg. 31, 121–125; discussion 125–126 (1996).

    Article  PubMed  Google Scholar 

  113. Urushihara, N. et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J. Pediatr. Surg. 35, 446–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Barnes, B. H. et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia. Liver Int. 29, 1253–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Allen, S. R. et al. Effect of rotavirus strain on the murine model of biliary atresia. J. Virol. 81, 1671–1679 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Jafri, M. et al. Cholangiocyte expression of α2β1-integrin confers susceptibility to rotavirus-induced experimental biliary atresia. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G16–G26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Erickson, N. et al. Temporal-spatial activation of apoptosis and epithelial injury in murine experimental biliary atresia. Hepatology 47, 1567–1577 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Jafri, M., Donnelly, B., Bondoc, A., Allen, S. & Tiao, G. Cholangiocyte secretion of chemokines in experimental biliary atresia. J. Pediatr. Surg. 44, 500–507 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mohanty, S. K., Ivantes, C. A., Mourya, R., Pacheco, C. & Bezerra, J. A. Macrophages are targeted by rotavirus in experimental biliary atresia and induce neutrophil chemotaxis by mip2/cxcl2. Pediatr. Res. 67, 345–351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Saxena, V. et al. Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia. Sci. Transl. Med. 3, 102ra194 (2011).

    Article  CAS  Google Scholar 

  121. Kuwajima, S. et al. Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat. Immunol. 7, 740–746 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Sun, C. M., Fiette, L., Tanguy, M., Leclerc, C. & Lo-Man, R. Ontogeny and innate properties of neonatal dendritic cells. Blood 102, 585–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Shivakumar, P. & Bezerra, J. A. Biliary atresia and Th1 function: linking lymphocytes and bile ducts: commentary on the article by Mack. et al. on page 79. Pediatr. Res. 56, 9–10 (2004).

    Article  PubMed  Google Scholar 

  124. Mohanty, S. K., Shivakumar, P., Sabla, G. & Bezerra, J. A. Loss of interleukin-12 modifies the pro-inflammatory response but does not prevent duct obstruction in experimental biliary atresia. BMC Gastroenterol. 6, 14 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tucker, R. M., Hendrickson, R. J., Mukaida, N., Gill, R. G. & Mack, C. L. Progressive biliary destruction is independent of a functional tumor necrosis factor-alpha pathway in a rhesus rotavirus-induced murine model of biliary atresia. Viral Immunol. 20, 34–43 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shivakumar, P., Mourya, R. & Bezerra, J. A. Perforin and granzymes work in synergy to mediate cholangiocyte injury in experimental biliary atresia. J. Hepatol. 60, 370–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Li, J. et al. Biliary repair and carcinogenesis are mediated by IL 33 dependent cholangiocyte proliferation. J. Clin. Invest. 124, 3241–3251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marvie, P. et al. Interleukin-33 overexpression is associated with liver fibrosis in mice and humans. J. Cell. Mol. Med. 14, 1726–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Hayashida, M. et al. The evidence of maternal microchimerism in biliary atresia using fluorescent in situ hybridization. J. Pediatr. Surg. 42, 2097–2101 (2007).

    Article  PubMed  Google Scholar 

  131. Muraji, T. et al. Maternal microchimerism in underlying pathogenesis of biliary atresia: quantification and phenotypes of maternal cells in the liver. Pediatrics 121, 517–521 (2008).

    Article  PubMed  Google Scholar 

  132. Miethke, A. G. et al. Post-natal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia. J. Hepatol. 52, 718–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tucker, R. M., Feldman, A. G., Fenner, E. K. & Mack, C. L. Regulatory T cells inhibit TH1 cell-mediated bile duct injury in murine biliary atresia. J. Hepatol. 59, 790–796 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Lages, C. S., Simmons, J., Chougnet, C. A. & Miethke, A. G. Regulatory T cells control the CD8 adaptive immune response at the time of ductal obstruction in experimental biliary atresia. Hepatology 56, 219–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lu, B. R., Brindley, S. M., Tucker, R. M., Lambert, C. L. & Mack, C. L. alpha-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology 139, 1753–1761 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chiaramonte, M. G., Donaldson, D. D., Cheever, A. W. & Wynn, T. A. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Invest. 104, 777–785 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McHedlidze, T. et al. Interleukin 33 dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Syn, W. K. et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 53, 106–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. European consortium of Biliary Atresia and Related Diseases [online].

  140. Childhood Liver Disease Research Network [online], (2015).

  141. Sarkhy, A., Schreiber, R. A., Milner, R. A. & Barker, C. C. Does adjuvant steroid therapy post-Kasai portoenterostomy improve outcome of biliary atresia? Systematic review and meta-analysis. Can. J. Gastroenterol. 25, 440–444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bezerra, J. A. et al. Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 311, 1750–1759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Davenport, M., Parsons, C., Tizzard, S. & Hadzic, N. Steroids in biliary atresia: single surgeon, single centre, prospective study. J. Hepatol. 59, 1054–1058 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NIH grants DK64008 and DK83781 to J.A.B. and DK95001 to A.M. J.A.B. is the Cincinnati Principal Investigator of the NIDDK-funded Childhood Liver Disease and Research Network (NIH grant DK62497).

Author information

Authors and Affiliations

Authors

Contributions

J.A.B. and A.A. contributed equally to researching data for the manuscript. All authors contributed equally to the discussion of content, writing and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Jorge A. Bezerra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asai, A., Miethke, A. & Bezerra, J. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 12, 342–352 (2015). https://doi.org/10.1038/nrgastro.2015.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing