Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of pharmacogenetics in nonmalignant gastrointestinal diseases

Abstract

Genetic variation influences the absorption and efflux of drugs in the intestine, the metabolism of drugs in the liver and the effects of these drugs on their target proteins. Indeed, variations in genes whose products have a role in the pathophysiology of nonmalignant gastrointestinal diseases, such as IBD, have been shown to affect the response of patients to therapy. This Review provides an overview of pharmacogenetics in the management of nonmalignant gastrointestinal diseases on the basis of data from clinical trials. Genetic variants that have the greatest effect on the management of patients with IBD involve the metabolism of thiopurines. Variation in drug metabolism by cytochrome P450 enzymes also requires attention so as to avoid drug interactions in patients receiving tricyclic antidepressants and PPIs. Few genotyping tests are currently used in the clinical management of patients with nonmalignant gastrointestinal diseases, owing to a lack of data from clinical trials showing their effectiveness in predicting nonresponse or adverse outcomes. However, pharmacogenetics could have a beneficial role in enabling pharmacotherapy for nonmalignant gastrointestinal diseases to be targeted to the individual patient.

Key Points

  • Genetic variations can affect drug absorption, efflux, metabolism and the ability of drugs to interact with their target proteins

  • Drug interactions might result from concomitant use of medications that alter the function of cytochrome P450 enzymes

  • Activity of the platelet function inhibitor, clopidogrel, is affected by medications (including PPIs) that alter CYP2C19 function; the clinical impact of coadministration of clopidogrel and PPIs, however, is unclear

  • Thiopurine dosage in patients with IBD is typically monitored with blood counts and, if necessary, 6-thioguanine or other metabolite levels, rather than genotyping the thiopurine methyltransferase gene

  • Genotyping is generally not applied in clinical management of nonmalignant gastrointestinal diseases because of the lack of clinical trial evidence that it predicts adverse effects or nonresponse

  • In nonmalignant gastrointestintal diseases, pharmacogenetics might facilitate individualized medicine in the future

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of CYP2 altered activity variants in different geographic regions.
Figure 2: Overview of thiopurine metabolism.
Figure 3: Structure of SLC6A4.
Figure 4: Hypothetical explanations for the association of alosetron treatment with slow colonic transit in SLC6A4*LL carriers and diarrhea-predominant IBS, and the worse clinical response to tegaserod in patients who are SLC6A4*LL carriers with constipation-predominant IBS.
Figure 5: Genetic variation in proteins involved in bile acid synthesis is associated with colonic transit in patients with IBS.

Similar content being viewed by others

References

  1. Camilleri, M. Scintigraphic biomarkers for colonic dysmotility. Clin. Pharmacol. Ther. 87, 748–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Givens, R. C. & Watkins, P. B. Pharmacogenetics and clinical gastroenterology. Gastroenterology 125, 240–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, L., McLeod, H. L. & Weinshilboum, R. M. Genomics and drug response. N. Engl. J. Med. 364, 1144–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roden, D. M. et al. Pharmacogenomics: challenges and opportunities. Ann. Intern. Med. 21, 749–757 (2006).

    Article  Google Scholar 

  5. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Roden, D. M. & George, A. L. Jr. The genetic basis of variability in drug responses. Nat. Rev. Drug Disc. 1, 37–44 (2002).

    Article  CAS  Google Scholar 

  7. Evans, W. E. & McLeod, H. L. Pharmacogenomics—drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Naranjo, C. A. et al. A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 30, 239–245 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Gardiner, S. J. & Begg, E. J. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev. 58, 521–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Holtzman, C. W., Wiggins, B. S. & Spinler, S. A. Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 26, 1601–1607 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Farrell, R. J. et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 118, 279–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hirano, T. et al. MDR1 mRNA expressions in peripheral blood mononuclear cells of patients with ulcerative colitis in relation to glucocorticoid administration. J. Clin. Pharmacol. 44, 481–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Prandota, J. Advances of molecular clinical pharmacology in gastroenterology and hepatology. Am. J. Ther. 17, e137–e162 (2010).

    Article  PubMed  Google Scholar 

  14. Mendoza, J. L. et al. MDR1 polymorphisms and response to azathioprine therapy in patients with Crohn's disease. Inflamm. Bowel Dis. 13, 585–590 (2007).

    Article  PubMed  Google Scholar 

  15. Herrlinger, K. R. et al. ABCB1 single-nucleotide polymorphisms determine tacrolimus response in patients with ulcerative colitis. Clin. Pharmacol. Ther. 89, 422–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Daniel, F. et al. Multidrug resistance gene-1 polymorphisms and resistance to cyclosporine A in patients with steroid resistant ulcerative colitis. Inflamm. Bowel Dis. 13, 19–23 (2007).

    Article  PubMed  Google Scholar 

  17. Parkman, H. P. et al. Domperidone treatment for gastroparesis: demographic and pharmacogenetic characterization of clinical efficacy and side-effects. Dig. Dis. Sci. 56, 115–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Gow, J. M., Hodges, L. M., Chinn, L. W. & Kroetz, D. L. Substrate-dependent effects of human ABCB1 coding polymorphisms. J. Pharmacol. Exp. Ther. 325, 435–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Lewis, D. F. 57 varieties: the human cytochromes P450. Pharmacogenomics 5, 305–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ingelman-Sundberg, M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch. Pharmacol. 369, 89–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Sistonen, J. et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet. Genomics 19, 170–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Aklillu, E., Herrlin, K., Gustafsson, L. L., Bertilsson, L. & Ingelman-Sundberg, M. Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics 12, 375–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Fuselli, S. et al. Evolution of detoxifying systems: the role of environment and population history in shaping genetic diversity at human CYP2D6 locus. Pharmacogenet. Genomics 20, 485–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Xie, H.-G., Kim, R. B., Wood, A. J. J. & Stein, C. M. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol. 41, 815–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dalén, P., Dahl, M.-L., Bernal Ruiz, M. L., Nordin, J. & Bertilsson, L. 10-Hydroxylation of nortriptyline in Caucasians with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin. Pharmacol. Ther. 63, 444–452 (1998).

    Article  PubMed  Google Scholar 

  26. Aklillu, E. et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP 2D6 alleles. J. Pharmacol. Exp. Ther. 278, 441–446 (1996).

    CAS  PubMed  Google Scholar 

  27. Ford, A. C., Talley, N. J., Schoenfeld, P. S., Quigley, E. M. & Moayyedi, P. Efficacy of antidepressants and psychological therapies in irritable bowel syndrome: systematic review and meta-analysis. Gut 58, 367–378 (2009).

    CAS  PubMed  Google Scholar 

  28. Zhang, J. P. & Malhotra, A. K. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin. Drug Metab. Toxicol. 7, 9–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caraco, Y., Sheller, J. & Wood, A. J. Pharmacogenetic determination of the effects of codeine and prediction of drug interactions. J. Pharmacol. Exp. Ther. 278, 1165–1174 (1996).

    CAS  PubMed  Google Scholar 

  30. Gasche, Y. et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med. 351, 2827–2831 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Koren, G., Cairns, J., Chitayak, D., Gaedigk, A. & Leeder, S. J. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368, 704 (2006).

    Article  PubMed  Google Scholar 

  32. Madadi, P. et al. Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can. Fam. Physician 53, 33–35 (2007).

    PubMed  PubMed Central  Google Scholar 

  33. De Morais, S. M. et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269, 15419–15422 (1994).

    CAS  PubMed  Google Scholar 

  34. De Morais, S. M. et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594–598 (1994).

    CAS  PubMed  Google Scholar 

  35. Ferguson, R. J. et al. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S. mephenytoin. J. Pharmacol. Exp. Ther. 284, 356–361 (1998).

    CAS  PubMed  Google Scholar 

  36. Ibeanu, G. C. et al. An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics 8, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Xie, H.-G., Kim, R. B., Wood, A. J. J. & Stein, C. M. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol. 41, 815–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Klotz, U., Schwab, M. & Treiber, G. CYP2C19 polymorphism and PPIs. Basic Clin. Pharmacol. Toxicol. 95, 2–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Furuta, T. et al. Effect of cythochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. 72, 453–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kawamura, M. et al. The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment. Pharmacol. Ther. 17, 965–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Chong, E. & Ensom, M. H. Pharmacogenetics of the PPIs: a systematic review. Pharmacotherapy 23, 460–471 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Schwab, M., Schaeffeler, E., Klotz, U. & Treiber, G. CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori. Clin. Pharmacol. Ther. 76, 201–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. de Leon, J., Susce, M. T. & Murray-Carmichael, E. The AmpliChip CYP450 genotyping test: Integrating a new clinical tool. Mol. Diagn. Ther. 10, 135–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Egan, L. J. et al. CYP2C19 pharmacogenetics in the clinical use of proton-pump inhibitors for gastro-oesophageal reflux disease: variant alleles predict gastric acid suppression, but not oesophageal acid exposure or reflux symptoms. Aliment. Pharmacol. Ther. 17, 1521–1528 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Saitoh, T. et al. Influences of CYP2C19 polymorphism on recurrence of reflux esophagitis during PPI maintenance therapy. Hepatogastroenterology 56, 703–706 (2009).

    CAS  PubMed  Google Scholar 

  46. Kita, T. et al. Different contribution of CYP2C19 in the in vitro metabolism of three PPIs. Biol. Pharm. Bull. 26, 386–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ishizaki, T. & Horai, Y. Review article: cytochrome P450 and the metabolism of PPIs—emphasis on rabeprazole. Aliment. Pharmacol. Ther. 13 (Suppl. 3), 27–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Fernando, H., Dart, A. M., Peter, K. & Shaw, J. A. Proton pump inhibitors, genetic polymorphisms and response to clopidogrel therapy. Thromb. Haemost. 105, 933–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Ellis, K. J., Stouffer, G. A., McLeod, H. L. & Lee, C. R. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics 10, 1799–1817 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, M., Wei, J. F., Xu, Y. N., Liu, X. J. & Huang, D. J. A meta-analysis of impact of PPIs on antiplatelet effect of clopidogrel. Cardiovasc. Ther. http://dx.doi.org/10.1111/j.1755-5922201100289.x.

  51. Hsiao, F. Y. et al. Relationship between cardiovascular outcomes and PPI use in patients receiving dual antiplatelet therapy after acute coronary syndrome. Pharmacoepidemiol. Drug Saf. 20, 1043–1049 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Paré, G. et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 363, 1704–1714 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Zabalza, M. et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart http://dx.doi.org/10.1136/hrt.2011.227652.

  54. Ma, T. K., Lam, Y. Y., Tan, V. P. & Yan, B. P. Variability in response to clopidogrel: how important are pharmacogenetics and drug interactions? Br. J. Clin. Pharmacol. 72, 697–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giorgi, M. A., Cohen Arazi, H., Gonzalez, C. D. & Di Girolamo, G. Beyond efficacy: pharmacokinetic differences between clopidogrel, prasugrel and ticagrelor. Expert Opin. Pharmacother. 12, 1285–1295 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Michalets, E. L. & Williams, C. R. Drug interactions with cisapride: clinical implications. Clin. Pharmacokinet. 39, 49–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Rebbeck, T. R., Jaffe, J. M., Walker, A. H., Wein, A. J. & Malkowicz, S. B. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl Cancer Inst. 90, 1225–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Amirimani, B. et al. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen. 42, 299–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hesselink, D. A. et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 74, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Hesselink, D. A. et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther. 76, 545–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Kane, G. C. & Lipsky, J. J. Drug-grapefruit juice interactions. Mayo Clin. Proc. 75, 933–942 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Kiani, J. & Imam, S. Z. Medicinal importance of grapefruit juice and its interaction with various drugs. Nutr. J. 6, 33 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pierik, M. et al. Tumour necrosis factor-α receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment. Pharmacol. Ther. 20, 303–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Dubinsky, M. C. et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122, 904–915 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Grant, D. M., Tang, B. K. & Kalow, W. Variability in caffeine metabolism. Clin. Pharmacol. Ther. 33, 591–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Guerciolini, R., Szumlanski, C. & Weinshilboum, R. M. Human liver xanthine oxidase: nature and extent of individual variation. Clin. Pharmacol. Ther. 50, 663–672 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Saruwatari, J. et al. A population phenotyping study of three drug-metabolizing enzymes in Kyushu, Japan, with use of the caffeine test. Clin. Pharmacol. Ther. 72, 200–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Carrillo, J. A. & Benitez, J. Caffeine metabolism in a healthy Spanish population: N-acetylator phenotype and oxidation pathways. Clin. Pharmacol. Ther. 55, 293–304 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Kudo, M. et al. Functional characterization of human xanthine oxidase allelic variants. Pharmacogenet. Genomics 18, 243–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Kudo, M., Sasaki, T., Ishikawa, M., Hirasawa, N. & Hiratsuka, M. Functional characterization of genetic polymorphisms identified in the promoter region of the xanthine oxidase gene. Drug Metab. Pharmacokinet. 25, 599–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Weinshilboum, R. M. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab. Dispos. 29, 601–605 (2001).

    CAS  PubMed  Google Scholar 

  72. Yates, C. R. et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126, 608–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Weinshilboum, R. M. & Sladek, S. L. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32, 651–662 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, E. J. & Kalow, W. Thiopurine S-methyltransferase activity in a Chinese population. Clin. Pharmacol. Ther. 54, 28–33 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Cooper, S. C., Ford, L. T., Berg, J. D. & Lewis, M. J. Ethnic variation of thiopurine S-methyltransferase activity: a large, prospective population study. Pharmacogenomics 9, 303–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Moini, M. et al. The frequency and distribution of thiopurine S-methyltransferase alleles in south Iranian population. Mol. Biol. Rep. http://dx.doi.org/10.1007/s11033-011-1248-6.

  77. Tumer, T. B. et al. The low frequency of defective TPMT alleles in Turkish population: a study on pediatric patients with acute lymphoblastic leukemia. Am. J. Hematol. 82, 906–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hakooz, N. et al. Genetic analysis of thiopurine methyltransferase polymorphism in the Jordanian population. Eur. J. Clin. Pharmacol. 66, 999–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Cao, Q., Zhu, Q., Shang, Y., Gao, M. & Si, J. Thiopurine methyltransferase gene polymorphisms in Chinese patients with inflammatory bowel disease. Digestion 79, 58–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, J. P., Zhou, S. F., Chen, X. & Huang, M. Determination of intra-ethnic differences in the polymorphisms of thiopurine S-methyltransferase in Chinese. Clin. Chim. Acta. 365, 337–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. González-Del Angel, A. et al. Thiopurine S-methyltransferase (TPMT) genetic polymorphisms in Mexican newborns. J. Clin. Pharm. Ther. 34, 703–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Ronen, O., Cohen, S. B. & Rund, D. Evaluating frequencies of thiopurine S-methyl transferase (TPMT) variant alleles in Israeli ethnic subpopulations using DNA analysis. Isr. Med. Assoc. J. 12, 721–725 (2010).

    PubMed  Google Scholar 

  83. Winter, J. et al. Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 20, 593–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Colombel, J. F. et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118, 1025–1030 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lichtenstein, G. R., Abreu, M. T., Cohen, R. & Tremaine, W. American Gastroenterological Association Institute Medical Position Statement on cortocosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 130, 935–939 (2006).

    Article  PubMed  Google Scholar 

  86. Ansari, A. et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment. Pharmacol. Ther. 16, 1743–1750 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Dubinsky, M. C. et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118, 705–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Cuffari, C., Hunt, S. & Bayless, T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut 48, 642–646 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cuffari, C., Theoret, Y., Latour, S. & Seidman, E. G. 6-mercaptopurine metabolism in Crohn's disease: correlation with efficacy and toxicity. Gut 39, 401–406 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lamers, C. B. H. W., Griffioen, G., van Hogezand, R. A. & Veenendaal, R. A. Azathioprine: an update on clinical efficacy and safety in inflammatory bowel disease. Scand. J. Gastroenterol. 230, 111–115 (1999).

    CAS  Google Scholar 

  91. Ansari, A. et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 28, 973–983 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Urano, W. et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 12, 183–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Guoqing, C. & Goeddel, D. V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  Google Scholar 

  94. MacEwan, D. J. TNF receptor subtype signalling: differences and cellular consequences. Cell Signal. 14, 477–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Louis, E. et al. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with -308 TNF gene polymorphism. Scand. J. Gastroenterol. 37, 818–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Shetty, A. & Forbes, A. Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn's disease. Am. J. Pharmacogenomics 2, 215–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Mascheretti, S. et al. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn's disease treated with infliximab. Pharmacogenomics J. 2, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Mascheretti, S. et al. Response to infliximab treatment in Crohn's disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 12, 509–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Vermeire, S. et al. NOD2/CARD15 does not influence response to infliximab in Crohn's disease. Gastroenterology 123, 106–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Louis, E. et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn's disease. Aliment. Pharmacol. Ther. 19, 511–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Louis, E. J. et al. Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn's disease: a subanalysis of the ACCENT I study. Pharmacogenet. Genomics 16, 911–914 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Urcelay, E. et al. IBD5 polymorphisms in inflammatory bowel disease: association with response to infliximab. World J. Gastroenterol. 11, 1187–1192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vermeire, S., Van Assche, G. & Rutgeerts, P. Role of genetics in prediction of disease course and response to therapy. World J. Gastroenterol. 16, 2609–2615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gershon, M. D. Review article: serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20 (Suppl. 7), 3–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Lesch, K. P. et al. Organization of the human serotonin transporter gene. J. Neural Transm. Gen. Sect. 95, 157–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Murphy, D. L., Lerner, A., Rudnick, G. & Lesch, K. P. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv. 4, 109–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J. J. et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21, 6348–6361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Camilleri, M. et al. Candidate genes and sensory functions in health and irritable bowel syndrome. Am. J. Physiol. 295, G219–G225 (2008).

    CAS  Google Scholar 

  110. Coates, M. D. et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126, 1657–1664 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Camilleri, M. et al. Alterations in expression of p11 and SERT in mucosal biopsy specimens of patients with irritable bowel syndrome. Gastroenterology 132, 17–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Viramontes, B. E. et al. Gender-related differences in slowing colonic transit by a 5-HT3 antagonist in subjects with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 96, 2671–2676 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Prather, C. M., Camilleri, M., Zinsmeister, A. R., McKinzie, S. & Thomforde, G. M. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology 118, 463–468 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Kapeller, J. et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 17, 2967–2977 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Camilleri, M. et al. Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology 123, 425–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Li, Y. et al. The association of serotonin transporter genetic polymorphisms and irritable bowel syndrome and its influence on tegaserod treatment in Chinese patients. Dig. Dis. Sci. 52, 2942–2949 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Wong, B. S. et al. A klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 140, 1934–1942 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Rao, A. S. et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: a pharmacodynamic and pharmacogenetic analysis. Gastroenterology 139, 1549–1558 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Wong, B. S. et al. Pharmacogenetics of the effects of colesevelam on colonic transit in irritable bowel syndrome with diarrhea. Dig. Dis. Sci. (in press)

  120. Shin, J. G., Soukhova, N. & Flockhart, D. A. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab. Dispos. 27, 1078–1084 (1999).

    CAS  PubMed  Google Scholar 

  121. van der Padt, A., van Schaik, R. H. & Sonneveld, P. Acute dystonic reaction to metoclopramide in patients carrying homozygous cytochrome P450 2D6 genetic polymorphisms. Neth. J. Med. 64, 160–162 (2006).

    CAS  PubMed  Google Scholar 

  122. Lundstrom, K. & Turpin, M. P. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest Virus. System. Biochem. Biophys. Res. Commun. 225, 1068–1072 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Bakker, P. R., Van Harten, P. N. & Van Os, J. Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr. Res. 83, 185–192 (2006).

    Article  PubMed  Google Scholar 

  124. Li, Y. Y. et al. Serotonin transporter gene polymorphisms in irritable bowel syndrome and their impact on tegaserod treatment. Zhonghua Nei Ke Za Zhi. 45, 552–555 (2006).

    CAS  PubMed  Google Scholar 

  125. FDA Announces Discontinued Marketing of GI Drug, Zelnorm, for Safety Reasons [online], (2011).

  126. Loughlin, J. et al. Tegaserod and the risk of cardiovascular ischemic events: an observational cohort study. J. Cardiovasc. Pharmacol. Ther. 15, 151–157 (2010).

    Article  PubMed  Google Scholar 

  127. Anderson, J. L. et al. Lack of association of tegaserod with adverse cardiovascular outcomes in a matched case-control study. J. Cardiovasc. Pharmacol. Ther. 14, 170–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Higgins, D. L. et al. The inability of tegaserod to affect platelet aggregation and coronary artery tone at supratherapeutic concentrations. Naunyn Schmiedebergs Arch. Pharmacol. http://dx.doi.org/10.1007/s00210-011-0687-x.

  129. Relling, M. V. & Klein, T. E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89, 464–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teutsch, S. M. et al. The evaluation of genomic applications in practice and prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet. Med. 11, 3–14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Beitelshees, A. L. & Veenstra, D. L. Evolving research and stakeholder perspectives on pharmacogenomics. JAMA 306, 1252–1253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Altman, R. B. Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin. Pharmacol. Ther. 89, 348–350 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. Camilleri is supported in part by research grants from NIH (DK-067071, DK-092179, DK-079866). The nomenclature used throughout this Review follows the HUGO Gene Nomenclature Committee, which has assigned unique gene symbols and names to more than 32,000 human loci, of which over 19,000 are protein coding (http://www.genenames.org/).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camilleri, M. The role of pharmacogenetics in nonmalignant gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 9, 173–184 (2012). https://doi.org/10.1038/nrgastro.2012.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing