Global aetiology and epidemiology of type 2 diabetes mellitus and its complications

Key Points

  • Globally, about 1 in 11 adults have diabetes mellitus (90% have type 2 diabetes mellitus (T2DM)), and Asia is the epicentre of this global T2DM epidemic.

  • The major driving factors of the global T2DM epidemic include overweight and obesity, sedentary lifestyle and increased consumption of unhealthy diets containing high levels of red meat and processed meat, refined grains and sugar-sweetened beverages.

  • Given its global influence, it is essential to break the vicious cycle of diabetes mellitus begetting diabetes mellitus over generations by implementing effective strategies to prevent gestational diabetes mellitus.

  • Among patients with T2DM, cardiovascular complications are the leading cause of morbidity and mortality, and kidney complications are highly prevalent in patients in Asia with diabetes mellitus.

  • Major clinical trials have demonstrated that diet and lifestyle modifications are effective in preventing T2DM in high-risk individuals.

  • T2DM management strategies including lifestyle modifications, social support and ensuring medication adherence are key to reducing the incidence of diabetes mellitus complications.

Abstract

Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Estimated total number of adults (20–79 years) living with diabetes mellitus, highlighting the top three countries or territories for number of adults with diabetes mellitus (20–79 years) in 2015.
Figure 2: Pathophysiology of hyperglycaemia in T2DM.

References

  1. 1

    International Diabetes Federation. IDF Diabetes Atlas — 7th Edition. DiabetesAtlas http://www.diabetesatlas.org/ (2015).

  2. 2

    Zimmet, P. Z. Diabetes and its drivers: the largest epidemic in human history? Clin. Diabetes Endocrinol. 3, 1 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Holman, N., Young, B. & Gadsby, R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med. 32, 1119–1120 (2015).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Bruno, G. et al. Incidence of type 1 and type 2 diabetes in adults aged 30–49 years: the population-based registry in the province of Turin, Italy. Diabetes Care 28, 2613–2619 (2005).

    Article  PubMed  Google Scholar 

  5. 5

    Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  6. 6

    Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 543–551 (2013).

    Article  PubMed  Google Scholar 

  8. 8

    Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790–797 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

  10. 10

    Roglic, G. & Unwin, N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res. Clin. Pract. 87, 15–19 (2010).

    Article  PubMed  Google Scholar 

  11. 11

    Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

  12. 12

    GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

  13. 13

    Beagley, J., Guariguata, L., Weil, C. & Motala, A. A. Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract. 103, 150–160 (2014).

    Article  PubMed  Google Scholar 

  14. 14

    Rubin, R. J., Altman, W. M. & Mendelson, D. N. Health care expenditures for people with diabetes mellitus, 1992. J. Clin. Endocrinol. Metab. 78, 809A–809F (1994).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  16. 16

    Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Kong, A. P. et al. Diabetes and its comorbidities — where east meets west. Nat. Rev. Endocrinol. 9, 537–547 (2013).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Xu, Y. et al. Prevalence and control of diabetes in Chinese adults. JAMA 310, 948–959 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Anjana, R. M. et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia 54, 3022–3027 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Goldhaber-Fiebert, J. D. et al. Inpatient treatment of diabetic patients in Asia: evidence from India, China, Thailand and Malaysia. Diabet Med. 27, 101–108 (2010).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Centers for Disease Control and Prevention https://www.cdc.gov/diabetes/pubs/pdf/methods11.pdf (2011).

  22. 22

    Al-Siyabi, H., Al-Anquodi, Z., Al-Hinai, H. & Al-Hinai, S. Nizwa Healthy Lifestyle Project Evaluation Report 2010 (Ad Dakhiliyah, Oman: Ministry of Health, 2010).

    Google Scholar 

  23. 23

    Al-Rubeaan, K. et al. Epidemiology of abnormal glucose metabolism in a country facing its epidemic: SAUDI-DM study. J. Diabetes 7, 622–632 (2015).

    Article  PubMed  Google Scholar 

  24. 24

    Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Arredondo, A. Type 2 diabetes and health care costs in Latin America: exploring the need for greater preventive medicine. BMC Med. 12, 136 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Zimmet, P., Alberti, K. G., Magliano, D. J. & Bennett, P. H. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol. 12, 616–622 (2016).

    Article  PubMed  Google Scholar 

  27. 27

    Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus — present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Nadeau, K. J. et al. Youth-onset type 2 diabetes consensus report: current status, challenges, and priorities. Diabetes Care 39, 1635–1642 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Dabelea, D. et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 311, 1778–1786 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  30. 30

    Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Fazeli Farsani, S., van der Aa, M. P., van der Vorst, M. M., Knibbe, C. A. & de Boer, A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. Diabetologia 56, 1471–1488 (2013).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Fu, J. & Prasad, H. C. Changing epidemiology of metabolic syndrome and type 2 diabetes in Chinese youth. Curr. Diab Rep. 14, 447 (2014).

    Article  PubMed  Google Scholar 

  33. 33

    Praveen, P. A. et al. Registry of Youth Onset Diabetes in India (YDR): rationale, recruitment, and current status. J. Diabetes Sci. Technol. 10, 1034–1041 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Ley, S. H. et al. Metabolic syndrome and its components as predictors of incident type 2 diabetes mellitus in an Aboriginal community. CMAJ 180, 617–624 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Reinehr, T. Type 2 diabetes mellitus in children and adolescents. World J. Diabetes 4, 270–281 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Australian Institute of Health and Welfare. Type 2 diabetes in Australia's children and young people: a working paper (Australian Institute of Health and Welfare, 2014).

  37. 37

    Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Weyer, C., Bogardus, C., Mott, D. M. & Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794 (1999).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. 40

    Centers for Disease Control and Prevention, Division of Diabetes Translation. Maps of diabetes and obesity in 1994, 2000, and 2014 (Centers for Disease Control and Prevention, 2016).

  41. 41

    Tian, Y. et al. BMI, leisure-time physical activity, and physical fitness in adults in China: results from a series of national surveys, 2000–2014. Lancet Diabetes Endocrinol. 4, 487–497 (2016).

    Article  PubMed  Google Scholar 

  42. 42

    Yang, W. et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362, 1090–1101 (2010).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Franco, M. et al. Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ 346, f1515 (2013).

    Article  PubMed  Google Scholar 

  44. 44

    NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

  45. 45

    Hu, F. B. in Obesity Epidemiology (ed. Hu, F. B.) 149–173 (Oxford Univ. Press, 2008).

    Google Scholar 

  46. 46

    Sinha, R. et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51, 1022–1027 (2002).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Carey, V. J. et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study. Am. J. Epidemiol. 145, 614–619 (1997).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Zheng, Y. et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 318, 255–269 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Lebovitz, H. E. & Banerji, M. A. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 28, 2322–2325 (2005).

    Article  PubMed  Google Scholar 

  50. 50

    Lee, J. W., Brancati, F. L. & Yeh, H. C. Trends in the prevalence of type 2 diabetes in Asians versus whites: results from the United States National Health Interview Survey, 1997–2008. Diabetes Care 34, 353–357 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat percent relationship. Obes. Rev. 3, 141–146 (2002).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Narayan, K. M. Type 2 diabetes: why we are winning the battle but losing the war? 2015 Kelly West award lecture. Diabetes Care 39, 653–663 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    CAS  Article  PubMed  Google Scholar 

  55. 55

    Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Tong, Y. Z. et al. Consensus on the prevention of type 2 diabetes in Chinese adults. Chin. Med. J. 130, 600–606 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Ley, S. H., Hamdy, O., Mohan, V. & Hu, F. B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383, 1999–2007 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  60. 60

    Bhupathiraju, S. N. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 100, 218–232 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  61. 61

    Schulze, M. B. & Hu, F. B. Primary prevention of diabetes: what can be done and how much can be prevented? Annu. Rev. Public Health 26, 445–467 (2005).

    Article  PubMed  Google Scholar 

  62. 62

    Salas-Salvado, J. et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann. Intern. Med. 160, 1–10 (2014).

    Article  PubMed  Google Scholar 

  63. 63

    Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400–2406 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  64. 64

    Grontved, A., Rimm, E. B., Willett, W. C., Andersen, L. B. & Hu, F. B. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch. Intern. Med. 172, 1306–1312 (2012).

    Article  PubMed  Google Scholar 

  65. 65

    Ekelund, U., Brage, S., Griffin, S. J. & Wareham, N. J. Objectively measured moderate- and vigorous-intensity physical activity but not sedentary time predicts insulin resistance in high-risk individuals. Diabetes Care 32, 1081–1086 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Rockette-Wagner, B. et al. The impact of lifestyle intervention on sedentary time in individuals at high risk of diabetes. Diabetologia 58, 1198–1202 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298, 2654–2664 (2007).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Hayashino, Y. et al. A prospective study of passive smoking and risk of diabetes in a cohort of workers: the High-Risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) study. Diabetes Care 31, 732–734 (2008).

    Article  PubMed  Google Scholar 

  69. 69

    Reaven, G. & Tsao, P. S. Insulin resistance and compensatory hyperinsulinemia: the key player between cigarette smoking and cardiovascular disease? J. Am. Coll. Cardiol. 41, 1044–1047 (2003).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 389, 1885–1906 (2017).

  71. 71

    Baliunas, D. O. et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 32, 2123–2132 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  72. 72

    Mumenthaler, M. S., Taylor, J. L., O'Hara, R. & Yesavage, J. A. Gender differences in moderate drinking effects. Alcohol Res. Health 23, 55–64 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Joosten, M. M., Beulens, J. W., Kersten, S. & Hendriks, H. F. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial. Diabetologia 51, 1375–1381 (2008).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  74. 74

    Ezzati, M. & Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 369, 954–964 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75

    Powles, J. W., Zatonski, W., Vander Hoorn, S. & Ezzati, M. The contribution of leading diseases and risk factors to excess losses of healthy life in Eastern Europe: burden of disease study. BMC Public Health 5, 116 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Böhm, A., Weigert, C., Staiger, H. & Haring, H. U. Exercise and diabetes: relevance and causes for response variability. Endocrine 51, 390–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Almgren, P. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54, 2811–2819 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78

    McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79

    Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  80. 80

    Dimas, A. S. et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63, 2158–2171 (2014).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. 81

    Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet. 17, 535–549 (2016).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Franks, P. W., Pearson, E. & Florez, J. C. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36, 1413–1421 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  83. 83

    Hagberg, J. M., Jenkins, N. T. & Spangenburg, E. Exercise training, genetics and type 2 diabetes-related phenotypes. Acta Physiol. 205, 456–471 (2012).

    CAS  Article  Google Scholar 

  84. 84

    Langenberg, C. et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med. 11, e1001647 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85

    Hivert, M. F. et al. Updated genetic score based on 34 confirmed type 2 diabetes loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60, 1340–1348 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. 86

    Franks, P. W. & McCarthy, M. I. Exposing the exposures responsible for type 2 diabetes and obesity. Science 354, 69–73 (2016).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Meigs, J. B. Multiple biomarker prediction of type 2 diabetes. Diabetes Care 32, 1346–1348 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  88. 88

    Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  89. 89

    Tripathy, D. et al. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study. J. Clin. Endocrinol. Metab. 100, 1855–1862 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  90. 90

    Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14, 353–362 (1962).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. 91

    Cunningham, M. The state of the World's indigenous peoples. Chapter V, health. United Nations http://www.un.org/esa/socdev/unpfii/documents/SOWIP/en/SOWIP_chapter5.pdf (2009).

    Google Scholar 

  92. 92

    Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 2886–2897 (2008).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Ong, T. P. & Ozanne, S. E. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 18, 354–360 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Coustan, D. R. Gestational diabetes mellitus. Clin. Chem. 59, 1310–1321 (2013).

    CAS  Article  PubMed  Google Scholar 

  97. 97

    Chen, L., Mayo, R., Chatry, A. & Hu, G. Gestational diabetes mellitus: its epidemiology and implication beyond pregnancy. Curr. Epidemiol. Rep. 3, 1–11 (2016).

    CAS  Article  Google Scholar 

  98. 98

    Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99

    Dabelea, D. et al. Increasing prevalence of type II diabetes in American Indian children. Diabetologia 41, 904–910 (1998).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 22, 516–530 (2015).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. 101

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. 102

    Rao, X., Montresor-Lopez, J., Puett, R., Rajagopalan, S. & Brook, R. D. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr. Diab Rep. 15, 603 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Gall, E. T., Carter, E. M., Earnest, C. M. & Stephens, B. Indoor air pollution in developing countries: research and implementation needs for improvements in global public health. Am. J. Public Health 103, e67–72 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. WHO http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf (2016).

  105. 105

    Anyanwagu, U., Idris, I. & Donnelly, R. Drug-induced diabetes mellitus: evidence for statins and other drugs affecting glucose metabolism. Clin. Pharmacol. Ther. 99, 390–400 (2016).

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Litwak, L. et al. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab. Syndr. 5, 57 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Gregg, E. W., Sattar, N. & Ali, M. K. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 4, 537–547 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108

    Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Zhuo, X., Zhang, P. & Hoerger, T. J. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am. J. Prev. Med. 45, 253–261 (2013).

    Article  PubMed  Google Scholar 

  110. 110

    Reusch, J. E. & Manson, J. E. Management of type 2 diabetes in 2017: getting to goal. JAMA 317, 1015–1016 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Booth, G. L., Kapral, M. K., Fung, K. & Tu, J. V. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368, 29–36 (2006).

    Article  PubMed  Google Scholar 

  112. 112

    Beckman, J. A., Paneni, F., Cosentino, F. & Creager, M. A. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur. Heart J. 34, 2444–2452 (2013).

    Article  PubMed  Google Scholar 

  113. 113

    Sarwar, N. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Seshasai, S. R. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

    CAS  Article  Google Scholar 

  115. 115

    Regensteiner, J. G. et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the american heart association. Circulation 132, 2424–2447 (2015).

    Article  PubMed  Google Scholar 

  116. 116

    Clarke, P. M. et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 7, e1000236 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Chi, Z. S., Lee, E. T., Lu, M., Keen, H. & Bennett, P. H. Vascular disease prevalence in diabetic patients in China: standardised comparison with the 14 centres in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44, S82–S86 (2001).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Forouhi, N. G., Sattar, N., Tillin, T., McKeigue, P. M. & Chaturvedi, N. Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with European men? Prospective follow-up of the Southall and Brent studies, UK. Diabetologia 49, 2580–2588 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E. & Neal, B. The global burden of diabetes and its complications: an emerging pandemic. Eur. J. Cardiovasc. Prev. Rehabil. 17, S3–S8 (2010).

    PubMed  Google Scholar 

  120. 120

    Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316, 602–610 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Zhang, L. et al. Trends in chronic kidney disease in China. N. Engl. J. Med. 375, 905–906 (2016).

    Article  PubMed  Google Scholar 

  122. 122

    McNeely, M. J. & Fujimoto, W. Y. in The Epidemiology of Diabetes Mellitus (eds Ekoé, J.-M., Rewers, M., Williams, R. & Zimmet, P.) 323–337 (John Wiley & Sons, 2008).

    Google Scholar 

  123. 123

    Wilkinson, E. et al. Lack of awareness of kidney complications despite familiarity with diabetes: a multi-ethnic qualitative study. J. Ren Care 37, 2–11 (2011).

    Article  PubMed  Google Scholar 

  124. 124

    Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  125. 125

    Wong, T. Y. et al. Prevalence and risk factors for diabetic retinopathy: the Singapore Malay Eye Study. Ophthalmology 115, 1869–1875 (2008).

    Article  PubMed  Google Scholar 

  126. 126

    Jee, D., Lee, W. K. & Kang, S. Prevalence and risk factors for diabetic retinopathy: the Korea National Health and Nutrition Examination Survey 2008–2011. Invest. Ophthalmol. Vis. Sci. 54, 6827–6833 (2013).

    Article  PubMed  Google Scholar 

  127. 127

    Schofield, C. J. et al. Mortality and hospitalization in patients after amputation: a comparison between patients with and without diabetes. Diabetes Care 29, 2252–2256 (2006).

    Article  PubMed  Google Scholar 

  128. 128

    Lim, T. S. et al. Outcomes of a contemporary amputation series. ANZ J. Surg. 76, 300–305 (2006).

    Article  PubMed  Google Scholar 

  129. 129

    Giovannucci, E. et al. Diabetes and cancer: a consensus report. Diabetes Care 33, 1674–1685 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130

    Cali, A. M. et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology 49, 1896–1903 (2009).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  131. 131

    Jordan, A. S., McSharry, D. G. & Malhotra, A. Adult obstructive sleep apnoea. Lancet 383, 736–747 (2014).

    Article  PubMed  Google Scholar 

  132. 132

    Tabak, A. G., Akbaraly, T. N., Batty, G. D. & Kivimaki, M. Depression and type 2 diabetes: a causal association? Lancet Diabetes Endocrinol. 2, 236–245 (2014).

    Article  PubMed  Google Scholar 

  133. 133

    Wadden, T. A. et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity 14, 737–752 (2006).

    Article  PubMed  Google Scholar 

  134. 134

    Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    CAS  Article  Google Scholar 

  135. 135

    Church, T. S. et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 304, 2253–2262 (2010).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  136. 136

    Sigal, R. J. & Kenny, G. P. Combined aerobic and resistance exercise for patients with type 2 diabetes. JAMA 304, 2298–2299 (2010).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    CAS  Article  Google Scholar 

  138. 138

    Diaz-Lopez, A. et al. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 38, 2134–2141 (2015).

    Article  PubMed  Google Scholar 

  139. 139

    Osborn, C. Y., Rivet Amico, K., Fisher, W. A., Egede, L. E. & Fisher, J. D. An information-motivation-behavioral skills analysis of diet and exercise behavior in Puerto Ricans with diabetes. J. Health Psychol. 15, 1201–1213 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Mayberry, L. S. & Osborn, C. Y. Family support, medication adherence, and glycemic control among adults with type 2 diabetes. Diabetes Care 35, 1239–1245 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Barry, C. L., Gollust, S. E. & Niederdeppe, J. Are Americans ready to solve the weight of the nation? N. Engl. J. Med. 367, 389–391 (2012).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Mozaffarian, D. et al. Executive summary: heart disease and stroke statistics — 2016 update: a report from the American Heart Association. Circulation 133, 447–454 (2016).

    Article  PubMed  Google Scholar 

  143. 143

    Zhao, Z. et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 7, e41641 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  144. 144

    Wu, J. H. et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br. J. Nutr. 107, S214–S227 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  145. 145

    Schulze, M. B. et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch. Intern. Med. 167, 956–965 (2007).

    CAS  Article  PubMed  Google Scholar 

  146. 146

    Dong, J. Y., Xun, P. & Qin, L. Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34, 2116–2122 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  147. 147

    Song, Y. et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 36, 1422–1428 (2013).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  148. 148

    Pan, A. et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 94, 1088–1096 (2011).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  149. 149

    Hu, E. A., Pan, A., Malik, V. & Sun, Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ 344, e1454 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Carter, P., Gray, L. J., Troughton, J., Khunti, K. & Davies, M. J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341, c4229 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Cooper, A. J. et al. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur. J. Clin. Nutr. 66, 1082–1092 (2012).

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  152. 152

    Tong, X., Dong, J. Y., Wu, Z. W., Li, W. & Qin, L. Q. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur. J. Clin. Nutr. 65, 1027–1031 (2011).

    CAS  Article  PubMed  Google Scholar 

  153. 153

    Aune, D., Norat, T., Romundstad, P. & Vatten, L. J. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 28, 845–858 (2013).

    CAS  Article  PubMed  Google Scholar 

  154. 154

    Malik, V. S. et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 2477–2483 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  155. 155

    Romaguera, D. et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia 56, 1520–1530 (2013).

    CAS  Article  PubMed  Google Scholar 

  156. 156

    Ding, M., Bhupathiraju, S. N., Chen, M., van Dam, R. M. & Hu, F. B. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37, 569–586 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  157. 157

    de Koning, L. et al. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 34, 1150–1156 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Y.Z. was supported by fellowship 7-12-MN-34 from the American Diabetes Association.

Author information

Affiliations

Authors

Contributions

Y.Z. and F.B.H. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. S.H.L. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Frank B. Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Ley, S. & Hu, F. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14, 88–98 (2018). https://doi.org/10.1038/nrendo.2017.151

Download citation

Further reading