Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity and endotypes in type 1 diabetes mellitus

Abstract

Despite major advances over the past decade, prevention and treatment of type 1 diabetes mellitus (T1DM) remain suboptimal, with large and unexplained variations in individual responses to interventions. The current classification schema for diabetes mellitus does not capture the complexity of this disease or guide clinical management effectively. One of the approaches to achieve the goal of applying precision medicine in diabetes mellitus is to identify endotypes (that is, well-defined subtypes) of the disease each of which has a distinct aetiopathogenesis that might be amenable to specific interventions. Here, we describe epidemiological, clinical, genetic, immunological, histological and metabolic differences within T1DM that, together, suggest heterogeneity in its aetiology and pathogenesis. We then present the emerging endotypes and their impact on T1DM prediction, prevention and treatment.

Key points

  • Type 1 diabetes mellitus (T1DM) is heterogeneous; defining endotypes, or disease subtypes each of which has a unique aetiopathogenesis that is amenable to a particular intervention, will help apply precision medicine to T1DM.

  • T1DM endotype 1 (T1DE1) includes T1DM diagnosed in early childhood and is characterized by extensive, early, β-cell destruction, aggressive insulitis with abundant CD8+ T and CD20+ B cells, aberrant proinsulin processing and an elevated circulating proinsulin to C-peptide ratio.

  • T1DM endotype 2 (T1DE2) includes T1DM diagnosed in adolescence or adulthood and is characterized by retention of many residual insulin-containing islets and without insulitis, fewer infiltrating CD8+ T cells, few CD20+ B cells, normal proinsulin processing and lower proinsulin to C-peptide ratio than T1DE2.

  • Evidence is emerging that T1DE1 might respond better than T1DE2 to interventional immunotherapy with agents targeted to specific immune cell subsets, such as rituximab or teplizumab, while GAD–alum therapy might be effective for treating T1DE2.

  • The T1DE2 endotype could underlie a spectrum of phenotypes with different degrees of severity of the autoimmune attack and thus, different rates of progression to insulin dependence, ranging from classic T1DM to latent autoimmune diabetes mellitus in adults or slowly progressive insulin-dependent diabetes mellitus.

  • Whether T1DM endotypes exist is still a matter of debate, but data are accumulating that support this framework, which will benefit from further research, including testing interventions directed to their underlying aetiopathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunological heterogeneity in T1DM.
Fig. 2: Influence of type 2 diabetes mellitus-related factors on type 1 diabetes mellitus development, and the effect of ethnicity.
Fig. 3: Conceptual model for the distribution of type 1 diabetes mellitus endotypes by age at onset.
Fig. 4: Conceptual model for the variability in trajectory of insulin secretory capacity using the T1DM endotype framework.
Fig. 5: Conceptual model for the trajectory of insulin secretory capacity in slowly progressing forms of type 1 diabetes mellitus.

Similar content being viewed by others

References

  1. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes–2022. Diabetes care 45, S17–S38 (2022).

    Article  Google Scholar 

  2. Babon, J. A. et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat. Med. 22, 1482–1487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes 54, 92–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Benkahla, M. A. et al. HLA class I hyper-expression unmasks beta cells but not alpha cells to the immune system in pre-diabetes. J. Autoimmun. 119, 102628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marhfour, I. et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417–2420 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mallone, R., Halliez, C., Rui, J. & Herold, K. C. The β-cell in type 1 diabetes pathogenesis: a victim of circumstances or an instigator of tragic events? Diabetes 71, 1603–1610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khosravi-Maharlooei, M. et al. Modeling human T1D-associated autoimmune processes. Mol. Metab. 56, 101417 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Leete, P. & Morgan, N. G. Footprints of immune cells in the pancreas in type 1 diabetes; to “B” or not to “B”: is that still the question? Front. Endocrinol. 12, 617437 (2021).

    Article  Google Scholar 

  9. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. J. Am. Med. Assoc. 309, 2473–2479 (2013).

    Article  CAS  Google Scholar 

  10. Krischer, J. P. Type 1 Diabetes TrialNet Study Group. The use of intermediate endpoints in the design of type 1 diabetes prevention trials. Diabetologia 56, 1919–1924 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rich, S. S., Weitkamp, L. R. & Barbosa, J. Genetic heterogeneity of insulin-dependent (type I) diabetes mellitus: evidence from a study of extended haplotypes. Am. J. Hum. Genet. 36, 1015–1023 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Onengut-Gumuscu, S. et al. Type 1 diabetes risk in African-ancestry participants and utility of an ancestry-specific genetic risk score. Diabetes Care 42, 406–415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Redondo, M. J., Steck, A. K. & Pugliese, A. Genetics of type 1 diabetes. Pediatr. Diabetes 19, 346–353 (2018).

    Article  PubMed  Google Scholar 

  14. Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594, 398–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grant, S. F. A., Wells, A. D. & Rich, S. S. Next steps in the identification of gene targets for type 1 diabetes. Diabetologia 63, 2260–2269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nekoua, M. P., Alidjinou, E. K. & Hober, D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 18, 503–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Girdhar, K. et al. A gut microbial peptide and molecular mimicry in the pathogenesis of type 1 diabetes. Proc. Natl Acad. Sci. USA 119, e2120028119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blanter, M., Sork, H., Tuomela, S. & Flodstrom-Tullberg, M. Genetic and environmental interaction in type 1 diabetes: a relationship between genetic risk alleles and molecular traits of enterovirus infection? Curr. Diabetes Rep. 19, 82 (2019).

    Article  Google Scholar 

  19. Redondo, M. J. et al. A type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care 41, 1887–1894 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferrat, L. A. et al. A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nat. Med. 26, 1247–1255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghalwash, M. et al. Two-age islet-autoantibody screening for childhood type 1 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol. 10, 589–596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redondo, M. J. On the road to universal screening for risk of type 1 diabetes. Lancet Diabetes Endocrinol. 10, 554–555 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koskinen, M. K. et al. Longitudinal pattern of first-phase insulin response is associated with genetic variants outside the class II HLA region in children with multiple autoantibodies. Diabetes 69, 12–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Evans-Molina, C. et al. β Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight 3, e120877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shields, B. M. et al. C-peptide decline in type 1 diabetes has two phases: an initial exponential fall and a subsequent stable phase. Diabetes Care 41, 1486–1492 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Keenan, H. A. et al. Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59, 2846–2853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hagopian, W. et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. Diabetes 62, 3901–3908 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Quattrin, T. et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N. Engl. J. Med. 383, 2007–2017 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, A. et al. Low-dose ATG/GCSF in established type 1 diabetes: a five-year follow-up report. Diabetes 70, 1123–1129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haller, M. J. et al. Low-dose anti-thymocyte globulin (ATG) preserves β-cell function and improves HbA1c in new-onset type 1 diabetes. Diabetes Care 41, 1917–1925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forlenza, G. P. et al. Effect of verapamil on pancreatic beta cell function in newly diagnosed pediatric type 1 diabetes: a randomized clinical trial. J. Am. Med. Assoc. 329, 990–999 (2023).

    Article  CAS  Google Scholar 

  33. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sims, E. K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci. Transl. Med. 13, eabc8980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Greenbaum, C., VanBuecken, D. & Lord, S. Disease-modifying therapies in type 1 diabetes: a look into the future of diabetes practice. Drugs 79, 43–61 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Redondo, M. J. et al. The clinical consequences of heterogeneity within and between different diabetes types. Diabetologia 63, 2040–2048 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Siller, A. F. et al. Challenges in the diagnosis of diabetes type in pediatrics. Pediatr. Diabetes 21, 1064–1073 (2020).

    Article  PubMed  Google Scholar 

  38. Cefalu, W. T. et al. Heterogeneity of diabetes: β-cells, phenotypes, and precision medicine: proceedings of an international symposium of the Canadian Institutes of Health Research’s Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health’s National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care 45, 3–22 (2022).

    Article  PubMed  Google Scholar 

  39. Battaglia, M. et al. Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. Diabetes Care 43, 5–12 (2020).

    Article  PubMed  Google Scholar 

  40. Deligne, C., You, S. & Mallone, R. Personalized immunotherapies for type 1 diabetes: who, what, when, and how? J. Pers. Med. 12, 542 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mobasseri, M. et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot. Perspect. 10, 98–115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Redondo, M. J. et al. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol. 10, 597–608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Z. et al. Immunological aspects of fulminant type 1 diabetes in Chinese. J. Immunol. Res. 2016, 1858202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kawabata, Y. et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia 52, 2513–2521 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kobayashi, T. Subtype of insulin-dependent diabetes mellitus (IDDM) in Japan: slowly progressive IDDM – the clinical characteristics and pathogenesis of the syndrome. Diabetes Res. Clin. Pract. 24(Suppl), S95–S99 (1994).

    Article  PubMed  Google Scholar 

  46. Mishra, R., Hodge, K. M., Cousminer, D. L., Leslie, R. D. & Grant, S. F. A. A global perspective of latent autoimmune diabetes in adults. Trends Endocrinol. Metab. 29, 638–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Tosur, M. et al. Ethnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at risk. Diabetologia 61, 2043–2053 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tosur, M. & Redondo, M. J. Heterogeneity of type 1 diabetes: the effect of ethnicity. Curr. Diabetes Rev. 14, 266–272 (2018).

    Article  PubMed  Google Scholar 

  49. Redondo, M. J. et al. Racial/ethnic minority youth with recent-onset type 1 diabetes have poor prognostic factors. Diabetes Care 41, 1017–1024 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Katte, J. C., McDonald, T. J., Sobngwi, E. & Jones, A. G. The phenotype of type 1 diabetes in sub-Saharan Africa. Front. Public Health 11, 1014626 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Parviainen, A. et al. Heterogeneity of type 1 diabetes at diagnosis supports existence of age-related endotypes. Diabetes Care 45, 871–879 (2022).

    Article  PubMed  Google Scholar 

  52. Leete, P. et al. The effect of age on the progression and severity of type 1 diabetes: potential effects on disease mechanisms. Curr. Diabetes Rep. 18, 115 (2018).

    Article  Google Scholar 

  53. Casu, A. et al. Characteristics of adult- compared to childhood-onset type 1 diabetes. Diabet. Med. 37, 2109–2115 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Mishra, R. et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med. 15, 88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cousminer, D. L. et al. First genome-wide association study of latent autoimmune diabetes in adults reveals novel insights linking immune and metabolic diabetes. Diabetes Care 41, 2396–2403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Howson, J. M. et al. Genetic analysis of adult-onset autoimmune diabetes. Diabetes 60, 2645–2653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6, 122–129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Redondo, M. J. et al. Single islet autoantibody at diagnosis of clinical type 1 diabetes is associated with older age and insulin resistance. J. Clin. Endocrinol. Metab. 105, 1629–1640 (2020).

    Article  PubMed  Google Scholar 

  59. Leslie, R. D. et al. Adult-onset type 1 diabetes: current understanding and challenges. Diabetes Care 44, 2449–2456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. So, M. et al. Advances in type 1 diabetes prediction using islet autoantibodies: beyond a simple count. Endocr. Rev. 42, 584–604 (2021).

    Article  PubMed  Google Scholar 

  61. Ross, C. et al. The prevalence of islet autoantibodies in children and adolescents with type 1 diabetes mellitus: a global scoping review. Front. Endocrinol. 13, 815703 (2022).

    Article  Google Scholar 

  62. Oram, R. A. et al. A type 1 diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care 39, 337–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Carlsson, A. et al. Absence of islet autoantibodies and modestly raised glucose values at diabetes diagnosis should lead to testing for MODY: lessons from a 5-year pediatric Swedish National Cohort study. Diabetes Care 43, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Balasubramanyam, A., Nalini, R., Hampe, C. S. & Maldonado, M. Syndromes of ketosis-prone diabetes mellitus. Endocr. Rev. 29, 292–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ilonen, J. et al. Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes. Pediatr. Diabetes 23, 693–702 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krischer, J. P. et al. Characteristics of children diagnosed with type 1 diabetes before vs after 6 years of age in the TEDDY cohort study. Diabetologia 64, 2247–2257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laine, A. P. et al. Non-HLA gene polymorphisms in the pathogenesis of type 1 diabetes: phase and endotype specific effects. Front. Immunol. 13, 909020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arvan, P., Pietropaolo, M., Ostrov, D. & Rhodes, C. J. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb. Perspect. Med. 2, a007658 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Giannopoulou, E. Z. et al. Islet autoantibody phenotypes and incidence in children at increased risk for type 1 diabetes. Diabetologia 58, 2317–2323 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Hagan, D. W., Ferreira, S. M., Santos, G. J. & Phelps, E. A. The role of GABA in islet function. Front. Endocrinol. 13, 972115 (2022).

    Article  Google Scholar 

  71. Wyatt, R. C. et al. The first 142 amino acids of glutamate decarboxylase do not contribute to epitopes recognized by autoantibodies associated with type 1 diabetes. Diabet. Med. 35, 954–963 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Endesfelder, D. et al. Time-resolved autoantibody profiling facilitates stratification of preclinical type 1 diabetes in children. Diabetes 68, 119–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Achenbach, P. et al. A classification and regression tree analysis identifies subgroups of childhood type 1 diabetes. EBioMedicine 82, 104118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arif, S. et al. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 63, 3835–3845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arif, S. et al. Evaluating T cell responses prior to the onset of type 1 diabetes. Diabet. Med. 39, e14860 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ferrara, C. T. et al. The role of age and excess body mass index in progression to type 1 diabetes in at-risk adults. J. Clin. Endocrinol. Metab. 102, 4596–4603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Redondo, M. J. et al. TCF7L2 genetic variants contribute to phenotypic heterogeneity of type 1 diabetes. Diabetes Care 41, 311–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Ferrara, C. T. et al. Excess BMI in childhood: a modifiable risk factor for type 1 diabetes development? Diabetes Care 40, 698–701 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Censin, J. C. et al. Childhood adiposity and risk of type 1 diabetes: a Mendelian randomization study. PLoS Med. 14, e1002362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Redondo, M. J. et al. Index60 as an additional diagnostic criterion for type 1 diabetes. Diabetologia 64, 836–844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nathan, B. M. et al. Dysglycemia and Index60 as prediagnostic end points for type 1 diabetes prevention trials. Diabetes Care 40, 1494–1499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sosenko, J. M. et al. Phenotypes associated with zones defined by area under the curve glucose and C-peptide in a population with islet autoantibodies. Diabetes Care 46, 1098–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Sims, E. K., Mirmira, R. G. & Evans-Molina, C. The role of beta-cell dysfunction in early type 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 27, 215–224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu, H. & Ballantyne, C. M. Metabolic inflammation and insulin resistance in obesity. Circ. Res. 126, 1549–1564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tao, L., Liu, H. & Gong, Y. Role and mechanism of the Th17/Treg cell balance in the development and progression of insulin resistance. Mol. Cell Biochem. 459, 183–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Butcher, M. J. et al. Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57, 491–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brooks-Worrell, B. M., Reichow, J. L., Goel, A., Ismail, H. & Palmer, J. P. Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 34, 168–173 (2011).

    Article  PubMed  Google Scholar 

  88. Brooks-Worrell, B. et al. Islet autoimmunity is highly prevalent and associated with diminished β-cell function in patients with type 2 diabetes in the grade study. Diabetes 71, 1261–1271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferrara-Cook, C. et al. Excess BMI accelerates islet autoimmunity in older children and adolescents. Diabetes Care 43, 580–587 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krischer, J. P. et al. Predictors of the initiation of islet autoimmunity and progression to multiple autoantibodies and clinical diabetes: the TEDDY study. Diabetes Care 45, 2271–2281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, A. E. et al. Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study. Diabetologia 61, 1484–1490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krischer, J. P. et al. Genetic and environmental interactions modify the risk of diabetes-related autoimmunity by 6 years of age: the TEDDY study. Diabetes Care 40, 1194–1202 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Redondo, M. J. et al. Transcription factor 7-like 2 (TCF7L2) gene polymorphism and progression from single to multiple autoantibody positivity in individuals at risk for type 1 diabetes. Diabetes Care 41, 2480–2486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Redondo, M. J. et al. Association of TCF7L2 variation with single islet autoantibody expression in children with type 1 diabetes. BMJ Open Diabetes Res. Care 2, e000008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Redondo, M. J. et al. Milder loss of insulin-containing islets in individuals with type 1 diabetes and type 2 diabetes-associated TCF7L2 genetic variants. Diabetologia 66, 127–131 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Redondo, M. J., Grant, S. F., Davis, A., Greenbaum, C. & Biobank, T. D. E. Dissecting heterogeneity in paediatric type 1 diabetes: association of TCF7L2 rs7903146 TT and low-risk human leukocyte antigen (HLA) genotypes. Diabet. Med. 34, 286–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Cammidge, P. J. Diabetes mellitus and heredity. Br. Med. J. 2, 738–741 (1928).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fajans, S. S. & Conn, J. W. Tolbutamide-induced improvement in carbohydrate tolerance of young people with mild diabetes mellitus. Diabetes 9, 83–88 (1960).

    Article  CAS  PubMed  Google Scholar 

  99. Tattersall, R. B. Mild familial diabetes with dominant inheritance. Q. J. Med. 43, 339–357 (1974).

    CAS  PubMed  Google Scholar 

  100. Bell, G. I. et al. Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc. Natl Acad. Sci. USA 88, 1484–1488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sperling, M. A. & Garg, A. in Diabetes in America Ch. 7 (eds Cowie, C. C. et al.) (National Institute of Diabetes and Digestive and Kidney Diseases, 2018).

  102. Kuruvilla, M. E., Lee, F. E. & Lee, G. B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin. Rev. Allergy Immunol. 56, 219–233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Winthrop, K. L. et al. Unmet need in rheumatology: reports from the Advances in Targeted Therapies meeting, 2022. Ann. Rheum. Dis. 82, 594–598 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Krogvold, L. et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia 57, 841–843 (2014).

    Article  PubMed  Google Scholar 

  105. Morgan, N. G. & Richardson, S. J. Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia 61, 2499–2506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Foulis, A. K., Liddle, C. N., Farquharson, M. A., Richmond, J. A. & Weir, R. S. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29, 267–274 (1986).

    Article  CAS  PubMed  Google Scholar 

  107. Morgan, N. G., Richardson, S. J., Powers, A. C., Saunders, D. C. & Brissova, M. Images from the Exeter Archival Diabetes Biobank now accessible via Pancreatlas. Diabetes Care 45, e174–e175 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Campbell-Thompson, M. et al. Network for pancreatic organ donors with diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab. Res. Rev. 28, 608–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kaddis, J. S., Pugliese, A. & Atkinson, M. A. A run on the biobank: what have we learned about type 1 diabetes from the nPOD tissue repository? Curr. Opin. Endocrinol. Diabetes Obes. 22, 290–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Gepts, W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14, 619–633 (1965).

    Article  CAS  PubMed  Google Scholar 

  111. In’t Veld, P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets 3, 131–138 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Powers, A. C. Type 1 diabetes mellitus: much progress, many opportunities. J. Clin. Investig. https://doi.org/10.1172/JCI142242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Richardson, S. J. & Pugliese, A. 100 years of insulin: pancreas pathology in type 1 diabetes: an evolving story. J. Endocrinol. 252, R41–R57 (2021).

    Article  PubMed  Google Scholar 

  114. Atkinson, M. A., Campbell-Thompson, M., Kusmartseva, I. & Kaestner, K. H. Organisation of the human pancreas in health and in diabetes. Diabetologia 63, 1966–1973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Leete, P. et al. Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65, 1362–1369 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Inshaw, J. R. J., Cutler, A. J., Crouch, D. J. M., Wicker, L. S. & Todd, J. A. Genetic variants predisposing most strongly to type 1 diabetes diagnosed under age 7 years lie near candidate genes that function in the immune system and in pancreatic β-cells. Diabetes Care 43, 169–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Smith, M. J., Cambier, J. C. & Gottlieb, P. A. Endotypes in T1D: B lymphocytes and early onset. Curr. Opin. Endocrinol. Diabetes Obes. 27, 225–230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leete, P. et al. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 63, 1258–1267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sims, E. K. et al. Proinsulin secretion is a persistent feature of type 1 diabetes. Diabetes Care 42, 258–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Rodriguez-Calvo, T. et al. Altered β-cell prohormone processing and secretion in type 1 diabetes. Diabetes 70, 1038–1050 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. MacDonald, M. J. et al. A novel intron-encoded neuropilin-1 isoform in pancreatic islets associated with very young age of onset of type 1 diabetes. Diabetes 71, 2058–2063 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  123. Nishimura, A. et al. Slowly progressive type 1 diabetes mellitus: current knowledge and future perspectives. Diabetes Metab. Syndr. Obes. 12, 2461–2477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Libman, I. M. & Becker, D. J. Coexistence of type 1 and type 2 diabetes mellitus: “double” diabetes? Pediatr. Diabetes 4, 110–113 (2003).

    Article  PubMed  Google Scholar 

  125. Brooks-Worrell, B. M. & Palmer, J. P. Attenuation of islet-specific T cell responses is associated with C-peptide improvement in autoimmune type 2 diabetes patients. Clin. Exp. Immunol. 171, 164–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Buzzetti, R., Pozzilli, P., Frederich, R., Iqbal, N. & Hirshberg, B. Saxagliptin improves glycaemic control and C-peptide secretion in latent autoimmune diabetes in adults (LADA). Diabetes Metab. Res. Rev. 32, 289–296 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Agardh, C. D., Lynch, K. F., Palmer, M., Link, K. & Lernmark, A. GAD65 vaccination: 5 years of follow-up in a randomised dose-escalating study in adult-onset autoimmune diabetes. Diabetologia 52, 1363–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Buzzetti, R. et al. Management of latent autoimmune diabetes in adults: a consensus statement from an international expert panel. Diabetes 69, 2037–2047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fiorina, P. & Pozzilli, P. Unveiling a novel type 1 diabetes endotype: opportunities for intervention. Diabetes Metab. Res. Rev. 38, e3536 (2022).

    Article  PubMed  Google Scholar 

  130. Jones, A. G., McDonald, T. J., Shields, B. M., Hagopian, W. & Hattersley, A. T. Latent autoimmune diabetes of adults (LADA) is likely to represent a mixed population of autoimmune (type 1) and nonautoimmune (type 2) diabetes. Diabetes Care 44, 1243–1251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Redondo, M. J., Evans-Molina, C., Steck, A. K., Atkinson, M. A. & Sosenko, J. The influence of type 2 diabetes-associated factors on type 1 diabetes. Diabetes Care 42, 1357–1364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Astudillo, M. et al. Type 2 diabetes in prepubertal children. Pediatr. Diabetes 22, 946–950 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Libman, I. M. et al. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. J. Am. Med. Assoc. 314, 2241–2250 (2015).

    Article  CAS  Google Scholar 

  134. Cree-Green, M. et al. Metformin improves peripheral insulin sensitivity in youth with type 1 diabetes. J. Clin. Endocrinol. Metab. 104, 3265–3278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pescovitz, M. D. et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results. Diabetes Care 37, 453–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hannelius, U., Beam, C. A. & Ludvigsson, J. Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes. Diabetologia 63, 2177–2181 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial – type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. J. Am. Med. Assoc. 318, 1891–1902 (2017).

    Article  Google Scholar 

  140. Sosenko, J. M. et al. Slowed metabolic decline after 1 year of oral insulin treatment among individuals at high risk for type 1 diabetes in the diabetes prevention trial-type 1 (DPT-1) and TrialNet oral insulin prevention trials. Diabetes 69, 1827–1832 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mendes, D., Alves, C. & Batel-Marques, F. Number needed to treat (NNT) in clinical literature: an appraisal. BMC Med. 15, 112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  143. Juneja, R. & Palmer, J. P. Type 1 1/2 diabetes: myth or reality? Autoimmunity 29, 65–83 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J.R.’s research is supported by the National Institutes of Health (NIH) grants R01 DK124395, R01 DK121843 and U54 DK118638. Recent studies in N.G.M.’s laboratory have been supported by Diabetes UK, MRC, JDRF, EFSD and from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 115797 (INNODIA) and no. 945268 (INNODIA HARVEST). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme, EFPIA, JDRF and The Leona M. and Harry B. Helmsley Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Maria J. Redondo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Matthias von Herrath, who co-reviewed with Estefania Masachs, Andrew Muir and Richard David Leslie for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redondo, M.J., Morgan, N.G. Heterogeneity and endotypes in type 1 diabetes mellitus. Nat Rev Endocrinol 19, 542–554 (2023). https://doi.org/10.1038/s41574-023-00853-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00853-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing