Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global aetiology and epidemiology of type 2 diabetes mellitus and its complications

Key Points

  • Globally, about 1 in 11 adults have diabetes mellitus (90% have type 2 diabetes mellitus (T2DM)), and Asia is the epicentre of this global T2DM epidemic.

  • The major driving factors of the global T2DM epidemic include overweight and obesity, sedentary lifestyle and increased consumption of unhealthy diets containing high levels of red meat and processed meat, refined grains and sugar-sweetened beverages.

  • Given its global influence, it is essential to break the vicious cycle of diabetes mellitus begetting diabetes mellitus over generations by implementing effective strategies to prevent gestational diabetes mellitus.

  • Among patients with T2DM, cardiovascular complications are the leading cause of morbidity and mortality, and kidney complications are highly prevalent in patients in Asia with diabetes mellitus.

  • Major clinical trials have demonstrated that diet and lifestyle modifications are effective in preventing T2DM in high-risk individuals.

  • T2DM management strategies including lifestyle modifications, social support and ensuring medication adherence are key to reducing the incidence of diabetes mellitus complications.

Abstract

Globally, the number of people with diabetes mellitus has quadrupled in the past three decades, and diabetes mellitus is the ninth major cause of death. About 1 in 11 adults worldwide now have diabetes mellitus, 90% of whom have type 2 diabetes mellitus (T2DM). Asia is a major area of the rapidly emerging T2DM global epidemic, with China and India the top two epicentres. Although genetic predisposition partly determines individual susceptibility to T2DM, an unhealthy diet and a sedentary lifestyle are important drivers of the current global epidemic; early developmental factors (such as intrauterine exposures) also have a role in susceptibility to T2DM later in life. Many cases of T2DM could be prevented with lifestyle changes, including maintaining a healthy body weight, consuming a healthy diet, staying physically active, not smoking and drinking alcohol in moderation. Most patients with T2DM have at least one complication, and cardiovascular complications are the leading cause of morbidity and mortality in these patients. This Review provides an updated view of the global epidemiology of T2DM, as well as dietary, lifestyle and other risk factors for T2DM and its complications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Estimated total number of adults (20–79 years) living with diabetes mellitus, highlighting the top three countries or territories for number of adults with diabetes mellitus (20–79 years) in 2015.
Figure 2: Pathophysiology of hyperglycaemia in T2DM.

References

  1. International Diabetes Federation. IDF Diabetes Atlas — 7th Edition. DiabetesAtlas http://www.diabetesatlas.org/ (2015).

  2. Zimmet, P. Z. Diabetes and its drivers: the largest epidemic in human history? Clin. Diabetes Endocrinol. 3, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Holman, N., Young, B. & Gadsby, R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med. 32, 1119–1120 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Bruno, G. et al. Incidence of type 1 and type 2 diabetes in adults aged 30–49 years: the population-based registry in the province of Turin, Italy. Diabetes Care 28, 2613–2619 (2005).

    Article  PubMed  Google Scholar 

  5. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 543–551 (2013).

    Article  PubMed  Google Scholar 

  8. Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790–797 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

  10. Roglic, G. & Unwin, N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res. Clin. Pract. 87, 15–19 (2010).

    Article  PubMed  Google Scholar 

  11. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 743–800 (2015).

  12. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

  13. Beagley, J., Guariguata, L., Weil, C. & Motala, A. A. Global estimates of undiagnosed diabetes in adults. Diabetes Res. Clin. Pract. 103, 150–160 (2014).

    Article  PubMed  Google Scholar 

  14. Rubin, R. J., Altman, W. M. & Mendelson, D. N. Health care expenditures for people with diabetes mellitus, 1992. J. Clin. Endocrinol. Metab. 78, 809A–809F (1994).

    Article  CAS  PubMed  Google Scholar 

  15. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  16. Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kong, A. P. et al. Diabetes and its comorbidities — where east meets west. Nat. Rev. Endocrinol. 9, 537–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Y. et al. Prevalence and control of diabetes in Chinese adults. JAMA 310, 948–959 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Anjana, R. M. et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia 54, 3022–3027 (2011).

    CAS  PubMed  Google Scholar 

  20. Goldhaber-Fiebert, J. D. et al. Inpatient treatment of diabetic patients in Asia: evidence from India, China, Thailand and Malaysia. Diabet Med. 27, 101–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Centers for Disease Control and Prevention https://www.cdc.gov/diabetes/pubs/pdf/methods11.pdf (2011).

  22. Al-Siyabi, H., Al-Anquodi, Z., Al-Hinai, H. & Al-Hinai, S. Nizwa Healthy Lifestyle Project Evaluation Report 2010 (Ad Dakhiliyah, Oman: Ministry of Health, 2010).

    Google Scholar 

  23. Al-Rubeaan, K. et al. Epidemiology of abnormal glucose metabolism in a country facing its epidemic: SAUDI-DM study. J. Diabetes 7, 622–632 (2015).

    Article  PubMed  Google Scholar 

  24. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  PubMed  Google Scholar 

  25. Arredondo, A. Type 2 diabetes and health care costs in Latin America: exploring the need for greater preventive medicine. BMC Med. 12, 136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zimmet, P., Alberti, K. G., Magliano, D. J. & Bennett, P. H. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat. Rev. Endocrinol. 12, 616–622 (2016).

    Article  PubMed  Google Scholar 

  27. Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus — present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Nadeau, K. J. et al. Youth-onset type 2 diabetes consensus report: current status, challenges, and priorities. Diabetes Care 39, 1635–1642 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dabelea, D. et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 311, 1778–1786 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fazeli Farsani, S., van der Aa, M. P., van der Vorst, M. M., Knibbe, C. A. & de Boer, A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: a systematic review and evaluation of methodological approaches. Diabetologia 56, 1471–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Fu, J. & Prasad, H. C. Changing epidemiology of metabolic syndrome and type 2 diabetes in Chinese youth. Curr. Diab Rep. 14, 447 (2014).

    Article  PubMed  Google Scholar 

  33. Praveen, P. A. et al. Registry of Youth Onset Diabetes in India (YDR): rationale, recruitment, and current status. J. Diabetes Sci. Technol. 10, 1034–1041 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ley, S. H. et al. Metabolic syndrome and its components as predictors of incident type 2 diabetes mellitus in an Aboriginal community. CMAJ 180, 617–624 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reinehr, T. Type 2 diabetes mellitus in children and adolescents. World J. Diabetes 4, 270–281 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Australian Institute of Health and Welfare. Type 2 diabetes in Australia's children and young people: a working paper (Australian Institute of Health and Welfare, 2014).

  37. Stumvoll, M., Goldstein, B. J. & van Haeften, T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Weyer, C., Bogardus, C., Mott, D. M. & Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Centers for Disease Control and Prevention, Division of Diabetes Translation. Maps of diabetes and obesity in 1994, 2000, and 2014 (Centers for Disease Control and Prevention, 2016).

  41. Tian, Y. et al. BMI, leisure-time physical activity, and physical fitness in adults in China: results from a series of national surveys, 2000–2014. Lancet Diabetes Endocrinol. 4, 487–497 (2016).

    Article  PubMed  Google Scholar 

  42. Yang, W. et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362, 1090–1101 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Franco, M. et al. Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ 346, f1515 (2013).

    Article  PubMed  Google Scholar 

  44. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

  45. Hu, F. B. in Obesity Epidemiology (ed. Hu, F. B.) 149–173 (Oxford Univ. Press, 2008).

    Book  Google Scholar 

  46. Sinha, R. et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51, 1022–1027 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Carey, V. J. et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study. Am. J. Epidemiol. 145, 614–619 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, Y. et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 318, 255–269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lebovitz, H. E. & Banerji, M. A. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 28, 2322–2325 (2005).

    Article  PubMed  Google Scholar 

  50. Lee, J. W., Brancati, F. L. & Yeh, H. C. Trends in the prevalence of type 2 diabetes in Asians versus whites: results from the United States National Health Interview Survey, 1997–2008. Diabetes Care 34, 353–357 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat percent relationship. Obes. Rev. 3, 141–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Narayan, K. M. Type 2 diabetes: why we are winning the battle but losing the war? 2015 Kelly West award lecture. Diabetes Care 39, 653–663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carlsson, L. M. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Tong, Y. Z. et al. Consensus on the prevention of type 2 diabetes in Chinese adults. Chin. Med. J. 130, 600–606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ley, S. H., Hamdy, O., Mohan, V. & Hu, F. B. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383, 1999–2007 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bhupathiraju, S. N. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 100, 218–232 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schulze, M. B. & Hu, F. B. Primary prevention of diabetes: what can be done and how much can be prevented? Annu. Rev. Public Health 26, 445–467 (2005).

    Article  PubMed  Google Scholar 

  62. Salas-Salvado, J. et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann. Intern. Med. 160, 1–10 (2014).

    Article  PubMed  Google Scholar 

  63. Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400–2406 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Grontved, A., Rimm, E. B., Willett, W. C., Andersen, L. B. & Hu, F. B. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch. Intern. Med. 172, 1306–1312 (2012).

    Article  PubMed  Google Scholar 

  65. Ekelund, U., Brage, S., Griffin, S. J. & Wareham, N. J. Objectively measured moderate- and vigorous-intensity physical activity but not sedentary time predicts insulin resistance in high-risk individuals. Diabetes Care 32, 1081–1086 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rockette-Wagner, B. et al. The impact of lifestyle intervention on sedentary time in individuals at high risk of diabetes. Diabetologia 58, 1198–1202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298, 2654–2664 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hayashino, Y. et al. A prospective study of passive smoking and risk of diabetes in a cohort of workers: the High-Risk and Population Strategy for Occupational Health Promotion (HIPOP-OHP) study. Diabetes Care 31, 732–734 (2008).

    Article  PubMed  Google Scholar 

  69. Reaven, G. & Tsao, P. S. Insulin resistance and compensatory hyperinsulinemia: the key player between cigarette smoking and cardiovascular disease? J. Am. Coll. Cardiol. 41, 1044–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet 389, 1885–1906 (2017).

  71. Baliunas, D. O. et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 32, 2123–2132 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mumenthaler, M. S., Taylor, J. L., O'Hara, R. & Yesavage, J. A. Gender differences in moderate drinking effects. Alcohol Res. Health 23, 55–64 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Joosten, M. M., Beulens, J. W., Kersten, S. & Hendriks, H. F. Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial. Diabetologia 51, 1375–1381 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ezzati, M. & Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 369, 954–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Powles, J. W., Zatonski, W., Vander Hoorn, S. & Ezzati, M. The contribution of leading diseases and risk factors to excess losses of healthy life in Eastern Europe: burden of disease study. BMC Public Health 5, 116 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Böhm, A., Weigert, C., Staiger, H. & Haring, H. U. Exercise and diabetes: relevance and causes for response variability. Endocrine 51, 390–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Almgren, P. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54, 2811–2819 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dimas, A. S. et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63, 2158–2171 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet. 17, 535–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Franks, P. W., Pearson, E. & Florez, J. C. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36, 1413–1421 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hagberg, J. M., Jenkins, N. T. & Spangenburg, E. Exercise training, genetics and type 2 diabetes-related phenotypes. Acta Physiol. 205, 456–471 (2012).

    Article  CAS  Google Scholar 

  84. Langenberg, C. et al. Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med. 11, e1001647 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hivert, M. F. et al. Updated genetic score based on 34 confirmed type 2 diabetes loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60, 1340–1348 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Franks, P. W. & McCarthy, M. I. Exposing the exposures responsible for type 2 diabetes and obesity. Science 354, 69–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Meigs, J. B. Multiple biomarker prediction of type 2 diabetes. Diabetes Care 32, 1346–1348 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tripathy, D. et al. A novel insulin resistance index to monitor changes in insulin sensitivity and glucose tolerance: the ACT NOW study. J. Clin. Endocrinol. Metab. 100, 1855–1862 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14, 353–362 (1962).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Cunningham, M. The state of the World's indigenous peoples. Chapter V, health. United Nations http://www.un.org/esa/socdev/unpfii/documents/SOWIP/en/SOWIP_chapter5.pdf (2009).

    Google Scholar 

  92. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 2886–2897 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ong, T. P. & Ozanne, S. E. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 18, 354–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Coustan, D. R. Gestational diabetes mellitus. Clin. Chem. 59, 1310–1321 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, L., Mayo, R., Chatry, A. & Hu, G. Gestational diabetes mellitus: its epidemiology and implication beyond pregnancy. Curr. Epidemiol. Rep. 3, 1–11 (2016).

    Article  CAS  Google Scholar 

  98. Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Dabelea, D. et al. Increasing prevalence of type II diabetes in American Indian children. Diabetologia 41, 904–910 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Ussar, S. et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 22, 516–530 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Rao, X., Montresor-Lopez, J., Puett, R., Rajagopalan, S. & Brook, R. D. Ambient air pollution: an emerging risk factor for diabetes mellitus. Curr. Diab Rep. 15, 603 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Gall, E. T., Carter, E. M., Earnest, C. M. & Stephens, B. Indoor air pollution in developing countries: research and implementation needs for improvements in global public health. Am. J. Public Health 103, e67–72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. WHO http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf (2016).

  105. Anyanwagu, U., Idris, I. & Donnelly, R. Drug-induced diabetes mellitus: evidence for statins and other drugs affecting glucose metabolism. Clin. Pharmacol. Ther. 99, 390–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Litwak, L. et al. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab. Syndr. 5, 57 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gregg, E. W., Sattar, N. & Ali, M. K. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 4, 537–547 (2016).

    Article  PubMed  Google Scholar 

  108. Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2, 56–64 (2014).

    Article  PubMed  Google Scholar 

  109. Zhuo, X., Zhang, P. & Hoerger, T. J. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am. J. Prev. Med. 45, 253–261 (2013).

    Article  PubMed  Google Scholar 

  110. Reusch, J. E. & Manson, J. E. Management of type 2 diabetes in 2017: getting to goal. JAMA 317, 1015–1016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Booth, G. L., Kapral, M. K., Fung, K. & Tu, J. V. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368, 29–36 (2006).

    Article  PubMed  Google Scholar 

  112. Beckman, J. A., Paneni, F., Cosentino, F. & Creager, M. A. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur. Heart J. 34, 2444–2452 (2013).

    Article  PubMed  Google Scholar 

  113. Sarwar, N. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Seshasai, S. R. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

    Article  CAS  Google Scholar 

  115. Regensteiner, J. G. et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the american heart association. Circulation 132, 2424–2447 (2015).

    Article  PubMed  Google Scholar 

  116. Clarke, P. M. et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 7, e1000236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Chi, Z. S., Lee, E. T., Lu, M., Keen, H. & Bennett, P. H. Vascular disease prevalence in diabetic patients in China: standardised comparison with the 14 centres in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44, S82–S86 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Forouhi, N. G., Sattar, N., Tillin, T., McKeigue, P. M. & Chaturvedi, N. Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with European men? Prospective follow-up of the Southall and Brent studies, UK. Diabetologia 49, 2580–2588 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E. & Neal, B. The global burden of diabetes and its complications: an emerging pandemic. Eur. J. Cardiovasc. Prev. Rehabil. 17, S3–S8 (2010).

    PubMed  Google Scholar 

  120. Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316, 602–610 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhang, L. et al. Trends in chronic kidney disease in China. N. Engl. J. Med. 375, 905–906 (2016).

    Article  PubMed  Google Scholar 

  122. McNeely, M. J. & Fujimoto, W. Y. in The Epidemiology of Diabetes Mellitus (eds Ekoé, J.-M., Rewers, M., Williams, R. & Zimmet, P.) 323–337 (John Wiley & Sons, 2008).

    Book  Google Scholar 

  123. Wilkinson, E. et al. Lack of awareness of kidney complications despite familiarity with diabetes: a multi-ethnic qualitative study. J. Ren Care 37, 2–11 (2011).

    Article  PubMed  Google Scholar 

  124. Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wong, T. Y. et al. Prevalence and risk factors for diabetic retinopathy: the Singapore Malay Eye Study. Ophthalmology 115, 1869–1875 (2008).

    Article  PubMed  Google Scholar 

  126. Jee, D., Lee, W. K. & Kang, S. Prevalence and risk factors for diabetic retinopathy: the Korea National Health and Nutrition Examination Survey 2008–2011. Invest. Ophthalmol. Vis. Sci. 54, 6827–6833 (2013).

    Article  PubMed  Google Scholar 

  127. Schofield, C. J. et al. Mortality and hospitalization in patients after amputation: a comparison between patients with and without diabetes. Diabetes Care 29, 2252–2256 (2006).

    Article  PubMed  Google Scholar 

  128. Lim, T. S. et al. Outcomes of a contemporary amputation series. ANZ J. Surg. 76, 300–305 (2006).

    Article  PubMed  Google Scholar 

  129. Giovannucci, E. et al. Diabetes and cancer: a consensus report. Diabetes Care 33, 1674–1685 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cali, A. M. et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology 49, 1896–1903 (2009).

    Article  PubMed  CAS  Google Scholar 

  131. Jordan, A. S., McSharry, D. G. & Malhotra, A. Adult obstructive sleep apnoea. Lancet 383, 736–747 (2014).

    Article  PubMed  Google Scholar 

  132. Tabak, A. G., Akbaraly, T. N., Batty, G. D. & Kivimaki, M. Depression and type 2 diabetes: a causal association? Lancet Diabetes Endocrinol. 2, 236–245 (2014).

    Article  PubMed  Google Scholar 

  133. Wadden, T. A. et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity 14, 737–752 (2006).

    Article  PubMed  Google Scholar 

  134. Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Church, T. S. et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 304, 2253–2262 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Sigal, R. J. & Kenny, G. P. Combined aerobic and resistance exercise for patients with type 2 diabetes. JAMA 304, 2298–2299 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Diaz-Lopez, A. et al. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 38, 2134–2141 (2015).

    Article  PubMed  Google Scholar 

  139. Osborn, C. Y., Rivet Amico, K., Fisher, W. A., Egede, L. E. & Fisher, J. D. An information-motivation-behavioral skills analysis of diet and exercise behavior in Puerto Ricans with diabetes. J. Health Psychol. 15, 1201–1213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mayberry, L. S. & Osborn, C. Y. Family support, medication adherence, and glycemic control among adults with type 2 diabetes. Diabetes Care 35, 1239–1245 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Barry, C. L., Gollust, S. E. & Niederdeppe, J. Are Americans ready to solve the weight of the nation? N. Engl. J. Med. 367, 389–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Mozaffarian, D. et al. Executive summary: heart disease and stroke statistics — 2016 update: a report from the American Heart Association. Circulation 133, 447–454 (2016).

    Article  PubMed  Google Scholar 

  143. Zhao, Z. et al. Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 7, e41641 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wu, J. H. et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br. J. Nutr. 107, S214–S227 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Schulze, M. B. et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch. Intern. Med. 167, 956–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Dong, J. Y., Xun, P. & Qin, L. Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34, 2116–2122 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Song, Y. et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 36, 1422–1428 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Pan, A. et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 94, 1088–1096 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Hu, E. A., Pan, A., Malik, V. & Sun, Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ 344, e1454 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Carter, P., Gray, L. J., Troughton, J., Khunti, K. & Davies, M. J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341, c4229 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cooper, A. J. et al. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur. J. Clin. Nutr. 66, 1082–1092 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Tong, X., Dong, J. Y., Wu, Z. W., Li, W. & Qin, L. Q. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur. J. Clin. Nutr. 65, 1027–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Aune, D., Norat, T., Romundstad, P. & Vatten, L. J. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 28, 845–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Malik, V. S. et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 2477–2483 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Romaguera, D. et al. Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia 56, 1520–1530 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Ding, M., Bhupathiraju, S. N., Chen, M., van Dam, R. M. & Hu, F. B. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37, 569–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. de Koning, L. et al. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 34, 1150–1156 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.Z. was supported by fellowship 7-12-MN-34 from the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and F.B.H. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. S.H.L. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Frank B. Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Ley, S. & Hu, F. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14, 88–98 (2018). https://doi.org/10.1038/nrendo.2017.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing