Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of diet and exercise in the transgenerational epigenetic landscape of T2DM

Key Points

  • Epigenetic processes have been implicated in the pathogenesis of type 2 diabetes mellitus

  • Diet and exercise might affect the epigenome over several generations

  • Epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors

  • Regulation of gene expression by DNA methylation and histone modification occurs by a mechanism that impairs the access of transcriptional machinery to the promoters

  • Studying the epigenetic signatures of insulin resistance and the adaptive response to exercise might provide insight into gene–environment networks that control glucose and energy homeostasis.

Abstract

Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The main forms of epigenetic modifications.
Figure 2: Putative effects of exercise and obesity on the predisposition to metabolic diseases.
Figure 3: Potential effect of environmentally induced epigenetic changes on gene expression.

References

  1. 1

    World Health Organization. Global report on diabetes. http://www.who.int/diabetes/global-report/en/ (2006).

  2. 2

    Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 26, 19–39 (2005).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Moller, D. E. & Kaufman, K. D. Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56, 45–62 (2005).

    Article  CAS  Google Scholar 

  4. 4

    Franks, P. W., Pearson, E. & Florez, J. C. Gene–environment and gene–treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36, 1413–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Billings, L. K. & Florez, J. C. The genetics of type 2 diabetes: what have we learned from GWAS? Ann. NY Acad. Sci. 1212, 59–77 (2010).

    Article  CAS  Google Scholar 

  6. 6

    Bonnefond, A. & Froguel, P. Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 21, 357–368 (2015).

    Article  CAS  Google Scholar 

  7. 7

    Prasad, R. B. & Groop, L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6, 87–123 (2015).

    Article  CAS  Google Scholar 

  8. 8

    McCarthy, M. I. Genomic medicine at the heart of diabetes management. Diabetologia 58, 1725–1729 (2015).

    Article  CAS  Google Scholar 

  9. 9

    Groop, L. & Pociot, F. Genetics of diabetes — are we missing the genes or the disease? Mol. Cell. Endocrinol. 382, 726–739 (2014).

    Article  CAS  Google Scholar 

  10. 10

    Kirchner, H., Osler, M. E., Krook, A. & Zierath, J. R. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol. 23, 203–209 (2013).

    Article  CAS  Google Scholar 

  11. 11

    Ling, C. & Groop, L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718–2725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ong, T. P. & Ozanne, S. E. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 18, 354–360 (2015).

    Article  CAS  Google Scholar 

  13. 13

    Tracey, R., Manikkam, M., Guerrero-Bosagna, C. & Skinner, M. K. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod. Toxicol. 36, 104–116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  Google Scholar 

  15. 15

    Costa, F. F. Epigenomics in cancer management. Cancer Manag. Res. 2, 255–265 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Youngson, N. A. & Whitelaw, E. Transgenerational epigenetic effects. Annu. Rev. Genomics Hum. Genet. 9, 233–257 (2008).

    Article  CAS  Google Scholar 

  17. 17

    Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).

    Article  Google Scholar 

  18. 18

    Fernandez-Twinn, D. S. et al. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R368–R373 (2005).

    Article  CAS  Google Scholar 

  19. 19

    Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601 (1992).

    Article  CAS  Google Scholar 

  20. 20

    Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992. Int. J. Epidemiol. 42, 1215–1222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ozanne, S. E., Sandovici, I. & Constancia, M. Maternal diet, aging and diabetes meet at a chromatin loop. Aging (Albany NY) 3, 548–554 (2011).

    Article  CAS  Google Scholar 

  22. 22

    Petry, C. J., Dorling, M. W., Pawlak, D. B., Ozanne, S. E. & Hales, C. N. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int. J. Exp. Diabetes Res. 2, 139–143 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Sandovici, I. et al. Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Natl Acad. Sci. USA 108, 5449–5454 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Dahri, S., Snoeck, A., Reusens-Billen, B., Remacle, C. & Hoet, J. J. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 40 (Suppl. 2), 115–120 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Lumey, L. H. et al. Cohort profile: the Dutch Hunger Winter families study. Int. J. Epidemiol. 36, 1196–1204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400–2406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Lumey, L. H., Khalangot, M. D. & Vaiserman, A. M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: a retrospective cohort study. Lancet Diabetes Endocrinol. 3, 787–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Thurner, S. et al. Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century. Proc. Natl Acad. Sci. USA 110, 4703–4707 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Kaati, G., Bygren, L. O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Faulk, C., Barks, A., Liu, K., Goodrich, J. M. & Dolinoy, D. C. Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 5, 487–500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    de Castro Barbosa, T. et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 5, 184–197 (2016).

    Article  CAS  Google Scholar 

  33. 33

    Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  Google Scholar 

  34. 34

    Warram, J. H., Krolewski, A. S., Gottlieb, M. S. & Kahn, C. R. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N. Engl. J. Med. 311, 149–152 (1984).

    Article  CAS  Google Scholar 

  35. 35

    Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    Article  CAS  Google Scholar 

  36. 36

    Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    Article  CAS  Google Scholar 

  37. 37

    Drake, A. J. et al. Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology 146, 913–919 (2005).

    Article  CAS  Google Scholar 

  38. 38

    Hardikar, A. A. et al. Multigenerational undernutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab. 22, 312–319 (2015).

    Article  CAS  Google Scholar 

  39. 39

    Dunn, G. A. & Bale, T. L. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150, 4999–5009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Yokomizo, H. et al. Maternal high-fat diet induces insulin resistance and deterioration of pancreatic β-cell function in adult offspring with sex differences in mice. Am. J. Physiol. Endocrinol. Metab. 306, E1163–E1175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Buescher, J. L. et al. Evidence for transgenerational metabolic programming in Drosophila. Dis. Model. Mech. 6, 1123–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Sanford, J. P., Clark, H. J., Chapman, V. M. & Rossant, J. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev. 1, 1039–1046 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Aiken, C. E., Tarry-Adkins, J. L. & Ozanne, S. E. Transgenerational developmental programming of ovarian reserve. Sci. Rep. 5, 16175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Terashima, M. et al. Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10, 861–871 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    [No authors listed.] Impact of physical activity during pregnancy and postpartum on chronic disease risk. Med. Sci. Sports Exerc. 38, 989–1006 (2006).

  53. 53

    Mourtakos, S. P. et al. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5,125 children. BMC Pregnancy Childbirth 15, 66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Laker, R. C. et al. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605–1611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Stanford, K. I. et al. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64, 427–433 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Sheldon, R. D. et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J. Hepatol. 64, 171–178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Murashov, A. K. et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 30, 775–784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Carter, L. G., Qi, N. R., De Cabo, R. & Pearson, K. J. Maternal exercise improves insulin sensitivity in mature rat offspring. Med. Sci. Sports Exerc. 45, 832–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Guth, L. M. et al. Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mouse offspring. Exp. Physiol. 98, 1469–1484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015).

    Article  CAS  Google Scholar 

  62. 62

    Zierath, J. R. & Wallberg-Henriksson, H. Looking ahead perspective: where will the future of exercise biology take us? Cell Metab. 22, 25–30 (2015).

    Article  CAS  Google Scholar 

  63. 63

    Donkin, I. et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 23, 369–378 (2016).

    Article  CAS  Google Scholar 

  64. 64

    Denham, J., O'Brien, B. J., Harvey, J. T. & Charchar, F. J. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics 7, 1–15 (2015).

    Article  CAS  Google Scholar 

  65. 65

    Dalgaard, K. et al. Trim28 haploinsufficiency triggers bi-stable epigenetic obesity. Cell 164, 353–364 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Vaag, A. & Poulsen, P. Twins in metabolic and diabetes research: what do they tell us? Curr. Opin. Clin. Nutr. Metab. Care 10, 591–596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Martin, G. M. Epigenetic drift in aging identical twins. Proc. Natl Acad. Sci. USA 102, 10413–10414 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Ollikainen, M. et al. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin. Epigenetics 7, 39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Zhao, J., Goldberg, J., Bremner, J. D. & Vaccarino, V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 61, 542–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Yuan, W. et al. An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat. Commun. 5, 5719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Ribel-Madsen, R. et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS ONE 7, e51302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Nilsson, E. et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63, 2962–2976 (2014).

    Article  Google Scholar 

  74. 74

    Pietilainen, K. H. et al. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int. J. Obes. (Lond.) 40, 654–661 (2016).

    Article  CAS  Google Scholar 

  75. 75

    Dayeh, T. et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 10, e1004160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Volkmar, M. et al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31, 1405–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Yang, B. T. et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol. Endocrinol. 26, 1203–1212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Stitzel, M. L. et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 12, 443–455 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Barres, R. et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab. 10, 189–198 (2009).

    Article  CAS  Google Scholar 

  80. 80

    Kulkarni, S. S. et al. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism 61, 175–185 (2012).

    Article  CAS  Google Scholar 

  81. 81

    Barres, R. et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 3, 1020–1027 (2013).

    Article  CAS  Google Scholar 

  82. 82

    Multhaup, M. L. et al. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes. Cell Metab. 21, 138–149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Nilsson, E. et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J. Clin. Endocrinol. Metab. 100, E1491–E1501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Kirchner, H. et al. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol. Metab. 5, 171–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Xu, X. et al. A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8, 522–533 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Agha, G. et al. Adiposity is associated with DNA methylation profile in adipose tissue. Int. J. Epidemiol. 44, 1277–1287 (2015).

    Article  Google Scholar 

  87. 87

    Guenard, F. et al. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol. Genomics 46, 216–222 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Keller, M. et al. Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia 57, 2374–2383 (2014).

    Article  CAS  Google Scholar 

  89. 89

    Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).

    Article  CAS  Google Scholar 

  90. 90

    El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Hall, E. et al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 12, 103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Ishikawa, K. et al. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity. PLoS ONE 10, e0115350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Pirola, L. et al. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res. 21, 1601–1615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Jacobsen, S. C. et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55, 3341–3349 (2012).

    Article  CAS  Google Scholar 

  95. 95

    Dahlman, I. et al. The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. Int. J. Obes. (Lond.) 39, 910–919 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Barres, R. et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15, 405–411 (2012).

    Article  CAS  Google Scholar 

  97. 97

    Yu, M. et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J. Physiol. 546, 327–335 (2003).

    Article  CAS  Google Scholar 

  98. 98

    McGee, S. L. & Hargreaves, M. Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53, 1208–1214 (2004).

    Article  CAS  Google Scholar 

  99. 99

    McGee, S. L., Fairlie, E., Garnham, A. P. & Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Nitert, M. D. et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61, 3322–3332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Rowlands, D. S. et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiol. Genomics 46, 747–765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Mukwevho, E. et al. Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and increases MEF2A binding to the site via a CaMK-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 294, E582–E588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Ronn, T. et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 9, e1003572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Aoi, W. et al. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am. J. Physiol. Endocrinol. Metab. 298, E799–E806 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Nielsen, S. et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 588, 4029–4037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Russell, A. P. et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 591, 4637–4653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Tonevitsky, A. G. et al. Dynamically regulated miRNA–mRNA networks revealed by exercise. BMC Physiol. 13, 9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    de Gonzalo-Calvo, D. et al. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J. Appl. Physiol. (1985) 119, 124–134 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Parrizas, M. et al. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J. Clin. Endocrinol. Metab. 100, E407–E415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Wardle, S. L. et al. Plasma microRNA levels differ between endurance and strength athletes. PLoS ONE 10, e0122107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Smith, J. A., Kohn, T. A., Chetty, A. K. & Ojuka, E. O. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am. J. Physiol. Endocrinol. Metab. 295, E698–E704 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants to R.B. and J.R.Z. from the Novo Nordisk Foundation, and to J.R.Z. from the Swedish Research Council, The European Research Council and the Strategic Program in Diabetes Research at Karolinska Institutet.

Author information

Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Juleen R. Zierath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrès, R., Zierath, J. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol 12, 441–451 (2016). https://doi.org/10.1038/nrendo.2016.87

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing